A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece...A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.展开更多
BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is ca...BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.展开更多
基金The National Natural Science Foundations of China(50505029)
文摘A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.
文摘BP neural networks is used to mid-term earthquake prediction in this paper. Some usual prediction parameters of seismology are used as the import units of neural networks. And the export units of neural networks is called as the character parameter W_0 describing enhancement of seismicity. We applied this method to space scanning of North China. The result shows that the mid-term anomalous zone of W_0-value usually appeared obviously around the future epicenter 1~3 years before earthquake. It is effective to mid-term prediction.