期刊文献+
共找到549篇文章
< 1 2 28 >
每页显示 20 50 100
Application of the back-error propagation artificial neural network(BPANN) on genetic variants in the PPAR-γ and RXR-α gene and risk of metabolic syndrome in a Chinese Han population 被引量:3
1
作者 Xu Zhao Kang Xu +11 位作者 Hui Shi Jinluo Cheng Jianhua Ma Yanqin Gao Qian Li Xinhua Ye Ying Lu Xiaofang Yu Juan Du Wencong Du Qing Ye Ling Zhou 《The Journal of Biomedical Research》 CAS 2014年第2期114-122,共9页
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga... This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome. 展开更多
关键词 back-error propagation artificial neural network bpann metabolic syndrome peroxisome prolif-erators activated receptor-γ (PPAR) gene retinoid X receptor-α (RXR-α) gene ADIPONECTIN
下载PDF
The Prediction of Propagation Loss of FM Radio Station Using Artificial Neural Network 被引量:1
2
作者 Ali Riza Ozdemir Mustafa Alkan +2 位作者 Mehmet Kabak Mehmet Gulsen Murat Hüsnü Sazli 《Journal of Electromagnetic Analysis and Applications》 2014年第11期358-365,共8页
In order to calculate the propagation loss of electromagnetic waves produced by a transmitter, a variety of models based on empirical and deterministic formulas are used. In this study, one of the artificial neural ne... In order to calculate the propagation loss of electromagnetic waves produced by a transmitter, a variety of models based on empirical and deterministic formulas are used. In this study, one of the artificial neural networks models, Levenberg-Marquardt algorithm, which is quite effective for predicting the propagation is used and the results obtained by this algorithm are compared with the simulation results based on ITU-R 1546 and Epstein-Peterson models. In this paper, the propagation loss of FM radio station using artificial neural networks models is studied depending on the Levenberg-Marquardt algorithm. For training the artificial neural network, as the input data;range (r), effective antenna height (h) and terrain irregularity (△H) parameters are involved and measured values are treated as the output data. The good results obtained in the city area reveal that the artificial neural network is a very efficient method to compute models which integrate theoretical and experimental data. Meanwhile, the results show that an ANN model performs very well compared with theoretical and empiric propagation models with regard to prediction accuracy, complexity, and prediction time. By comparing the results, the RMSE for Neural Network Model using Levenberg-Marquardt is 9.57, and it is lower than that of classical propagation model using Epstein-Peterson for which RMSE is 10.26. 展开更多
关键词 artificial neural network PREDICTION of propagation
下载PDF
Preparation of ZrB_2-SiC Powders via Carbothermal Reduction of Zircon and Prediction of Product Composition by Back-Propagation Artificial Neural Network 被引量:1
3
作者 LIU Jianghao DU Shuang +2 位作者 LI Faliang ZHANG Haijun ZHANG Shaoweia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1062-1069,共8页
Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and ... Phase pure ZrB2-SiC composite powders were prepared after 1 450℃/3 h via carbothermal reduction route,by using ZrSiO4,B2O3 and carbon as the raw materials.The influences of firing temperature as well as the type and amount of additive on the phase composition of final products were detailedly investigated.The results indicated that the onset formation temperature of ZrB2-SiC was reduced to 1 400℃by the present conditions,and oxide additive(including CoSO4·7H2O,Y2O3 and TiO2)was effective in enhancing the decomposition of raw ZrSiO4,therefore accelerating the synthesis of ZrB2-SiC.Moreover,microstructural observation showed that the as-prepared ZrB2 and SiC respectively had well-defined hexagonal columnar and fibrous morphology.Furthermore,the methodology of back-propagation artificial neural networks(BP-ANNs)was adopted to establish a model for predicting the reaction extent(e g,the content of ZrB2-SiC in final product)in terms of various processing conditions.The results predicted by the as-established BP-ANNs model matched well with that of testing experiment(with a mean square error in 10^(-3) degree),verifying good effectiveness of the proposed strategy. 展开更多
关键词 ZrB2-SiC powders carbothermal reduction back-propagation artificial neural networks (BP-ANNs) composition prediction
下载PDF
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
4
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
5
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 artificial neural network Genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Artificial neural network approach to assess selective flocculation on hematite and kaolinite 被引量:2
6
作者 Lopamudra Panda P.K.Banerjee +2 位作者 Surendra Kumar Biswal R.Venugopal N.R.Mandre 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期637-646,共10页
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt... Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values. 展开更多
关键词 HEMATITE KAOLINITE FLOCCULATION artificial neural networks back propagation algorithm Fourier transform infrared spectroscopy separation efficiency
下载PDF
PREDICTION OF FLOW STRESS OF HIGH-SPEED STEEL DURING HOT DEFORMATION BY USING BP ARTIFICIAL NEURAL NETWORK 被引量:2
7
作者 J. T. Liu H.B. Chang +1 位作者 R.H. Wu T. Y. Hsu(Xu Zuyao) and X.R. Ruan( 1)Department of Plasticity Technology, Shanghai Jiao Tong University, Shanghai 200030, China 2)School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期394-400,共7页
The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃... The hot deformation behavior of TI (18W-4Cr-1V) high-speed steel was investigated by means of continuous compression tests performed on Gleeble 1500 thermomechan- ical simulator in a wide range of tempemtures (950℃-1150℃) with strain rotes of 0.001s-1-10s-1 and true strains of 0-0. 7. The flow stress at the above hot defor- mation conditions is predicted by using BP artificial neural network. The architecture of network includes there are three input parameters:strain rate,temperature T and true strain , and just one output parameter, the flow stress ,2 hidden layers are adopted, the first hidden layer includes 9 neurons and second 10 negroes. It has been verified that BP artificial neural network with 3-9-10-1 architecture can predict flow stress of high-speed steel during hot deformation very well. Compared with the prediction method of flow stress by using Zaped-Holloman parumeter and hyperbolic sine stress function, the prediction method by using BP artificial neurul network has higher efficiency and accuracy. 展开更多
关键词 T1 high-speed steel flow stress prediction of flow stress back propagation (BP) artificial neural network (ANN)
下载PDF
A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak 被引量:10
8
作者 A.Sayadi M.Monjezi +1 位作者 N.Talebi Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期318-324,共7页
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and... In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter. 展开更多
关键词 Rock fragmentation Backbreak artificial neural network Back propagation Radial basis function
下载PDF
Artificial Neural Network and Full Factorial Design Assisted AT-MRAM on Fe Oxides, Organic Materials, and Fe/Mn Oxides in Surficial Sediments 被引量:1
9
作者 GAO Qian WANG Zhi-zeng WANG Qian LI Shan-shan LI Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期944-948,共5页
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf... Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments. 展开更多
关键词 Back propagation(BP) artificial neural network Full factorial design Fe/Mn oxide Organic material ATRAZINE Interaction
下载PDF
An Efficient and Robust Fall Detection System Using Wireless Gait Analysis Sensor with Artificial Neural Network (ANN) and Support Vector Machine (SVM) Algorithms 被引量:2
10
作者 Bhargava Teja Nukala Naohiro Shibuya +5 位作者 Amanda Rodriguez Jerry Tsay Jerry Lopez Tam Nguyen Steven Zupancic Donald Yu-Chun Lie 《Open Journal of Applied Biosensor》 2014年第4期29-39,共11页
In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Ga... In this work, a total of 322 tests were taken on young volunteers by performing 10 different falls, 6 different Activities of Daily Living (ADL) and 7 Dynamic Gait Index (DGI) tests using a custom-designed Wireless Gait Analysis Sensor (WGAS). In order to perform automatic fall detection, we used Back Propagation Artificial Neural Network (BP-ANN) and Support Vector Machine (SVM) based on the 6 features extracted from the raw data. The WGAS, which includes a tri-axial accelerometer, 2 gyroscopes, and a MSP430 microcontroller, is worn by the subjects at either T4 (at back) or as a belt-clip in front of the waist during the various tests. The raw data is wirelessly transmitted from the WGAS to a near-by PC for real-time fall classification. The BP ANN is optimized by varying the training, testing and validation data sets and training the network with different learning schemes. SVM is optimized by using three different kernels and selecting the kernel for best classification rate. The overall accuracy of BP ANN is obtained as 98.20% with LM and RPROP training from the T4 data, while from the data taken at the belt, we achieved 98.70% with LM and SCG learning. The overall accuracy using SVM was 98.80% and 98.71% with RBF kernel from the T4 and belt position data, respectively. 展开更多
关键词 artificial neural network (ANN) Back propagation FALL Detection FALL Prevention GAIT Analysis SENSOR Support Vector Machine (SVM) WIRELESS SENSOR
下载PDF
Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network 被引量:4
11
作者 王鑫 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期759-764,共6页
A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm... A new method applying an artificial neural network (ANN) to retrieve water vapor profiles in the troposphere is presented. In this paper, a fully-connected, three-layer network based on the backpropagation algorithm is constructed. Month, latitude, altitude and bending angle are chosen as the input vectors and water vapor pressure as the output vector. There are 130 groups of occultation measurements from June to November 2002 in the dataset. Seventy pairs of bending angles and water vapor pressure profiles are used to train the ANN, and the sixty remaining pairs of profiles are applied to the validation of the retrieval. By comparing the retrieved profiles with the corresponding ones from the Information System and Data Center of the Challenging Mini-Satellite Payload for Geoscientific Research and Application (CHAMP-ISDC), it can be concluded that the ANN is relatively convenient and accurate. Its results can be provided as the first guess for the iterative methods or the non-linear optimal estimation inverse method. 展开更多
关键词 radio occultation water vapor artificial neural network BACK-propagation
下载PDF
A Review on Back-Propagation Neural Networks in the Application of Remote Sensing Image Classification 被引量:2
12
作者 Alaeldin Suliman Yun Zhang 《Journal of Earth Science and Engineering》 2015年第1期52-65,共14页
ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, th... ANNs (Artificial neural networks) are used extensively in remote sensing image processing. It has been proven that BPNNs (back-propagation neural networks) have high attainable classification accuracy. However, there is a noticeable variation in the achieved accuracies due to different network designs and implementations. Hence, researchers usually need to conduct several experimental trials before they can finalize the network design. This is a time consuming process which significantly reduces the effectiveness of using BPNNs and the final design may still not be optimal. Therefore, there is a need to see whether there are some common guidelines for effective design and implementation of BPNNs. With this aim in mind, this paper attempts to find and summarize the common guidelines suggested by different authors through literature review and discussion of the findings. To provide readers with background and contextual information, some ANN fundamentals are also introduced. 展开更多
关键词 artificial neural networks back propagation CLASSIFICATION remote sensing.
下载PDF
Artificial neural network approach for rheological characteristics of coal-water slurry using microwave pre-treatment 被引量:3
13
作者 B.K.Sahoo S.De B.C.Meikap 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期379-386,共8页
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol... Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model. 展开更多
关键词 Microwave pre-treatment Coal-water slurry Apparent viscosity artificial neural network Back propagation algorithm
下载PDF
Performance prediction of gravity concentrator by using artificial neural network-a case study 被引量:3
14
作者 Panda Lopamudra Tripathy Sunil Kumar 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期461-465,共5页
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ... In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values. 展开更多
关键词 Chromite artificial neural network Wet shaking table Performance prediction Back propagation algorithm
下载PDF
Applying Artificial Neural Networks to Modeling the Middle Atmosphere 被引量:2
15
作者 肖存英 胡雄 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第4期883-890,共8页
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag... An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause. 展开更多
关键词 artificial neural network middle atmosphere MODELING back-propagation algorithm NRLMSISE- 00 model
下载PDF
A BP Artificial Neural Network Model for Earthquake Magnitude Prediction in Himalayas, India 被引量:5
16
作者 S. Narayanakumar K. Raja 《Circuits and Systems》 2016年第11期3456-3468,共13页
The aim of this study is to evaluate the performance of BP neural network techniques in predicting earthquakes occurring in the region of Himalayan belt (with the use of different types of input data). These parameter... The aim of this study is to evaluate the performance of BP neural network techniques in predicting earthquakes occurring in the region of Himalayan belt (with the use of different types of input data). These parameters are extracted from Himalayan Earthquake catalogue comprised of all minor, major events and their aftershock sequences in the Himalayan basin for the past 128 years from 1887 to 2015. This data warehouse contains event data, event time with seconds, latitude, longitude, depth, standard deviation and magnitude. These field data are converted into eight mathematically computed parameters known as seismicity indicators. These seismicity indicators have been used to train the BP Neural Network for better decision making and predicting the magnitude of the pre-defined future time period. These mathematically computed indicators considered are the clustered based on every events above 2.5 magnitude, total number of events from past years to 2014, frequency-magnitude distribution b-values, Gutenberg-Richter inverse power law curve for the n events, the rate of square root of seismic energy released during the n events, energy released from the event, the mean square deviation about the regression line based on the Gutenberg-Richer inverse power law for the n events, coefficient of variation of mean time and average value of the magnitude for last n events. We propose a three-layer feed forward BP neural network model to identify factors, with the actual occurrence of the earthquake magnitude M and other seven mathematically computed parameters seismicity indicators as input and target vectors in Himalayan basin area. We infer through comparing curve as observed from seismometer in Himalayan Earthquake catalogue comprised of all events above magnitude 2.5 mg, their aftershock sequences in the Himalayan basin of year 2015 and BP neural network predicting earthquakes in 2015. The model yields good prediction result for the earthquakes of magnitude between 4.0 and 6.0. 展开更多
关键词 artificial neural networks Back propagation Multilayer neural network EARTHQUAKES Prediction Systems
下载PDF
Application of artificial neural network to calculation of solitary wave run-up 被引量:1
17
作者 You-xing WEI Deng-ting WANG Qing-jun LIU 《Water Science and Engineering》 EI CAS 2010年第3期304-312,共9页
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a... The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up. 展开更多
关键词 solitary wave run-up artificial neural network back-propagation (BP) network additional momentum method auto-adjusting learning factor
下载PDF
Artificial Neural Networks for Event Based Rainfall-Runoff Modeling
18
作者 Archana Sarkar Rakesh Kumar 《Journal of Water Resource and Protection》 2012年第10期891-897,共7页
The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model... The Artificial Neural Network (ANN) approach has been successfully used in many hydrological studies especially the rainfall-runoff modeling using continuous data. The present study examines its applicability to model the event-based rainfall-runoff process. A case study has been done for Ajay river basin to develop event-based rainfall-runoff model for the basin to simulate the hourly runoff at Sarath gauging site. The results demonstrate that ANN models are able to provide a good representation of an event-based rainfall-runoff process. The two important parameters, when predicting a flood hydrograph, are the magnitude of the peak discharge and the time to peak discharge. The developed ANN models have been able to predict this information with great accuracy. This shows that ANNs can be very efficient in modeling an event-based rainfall-runoff process for determining the peak discharge and time to the peak discharge very accurately. This is important in water resources design and management applications, where peak discharge and time to peak discharge are important input 展开更多
关键词 artificial neural networks (ANNs) EVENT Based RAINFALL-RUNOFF Process Error BACK propagation neural Power
下载PDF
PREDICTING SEISMIC RESPONSE OF STRUCTURES BY ARTIFICIAL NEURAL NETWORKS
19
作者 何玉敖 胡贤忠 詹胜 《Transactions of Tianjin University》 EI CAS 1996年第2期41+38-40,共4页
This paper introduces a new way of system identification of dynamic based on artificial neural networks (ANN) and explains concretely how to predict seismic response of structures by ANN in a practical example. This ... This paper introduces a new way of system identification of dynamic based on artificial neural networks (ANN) and explains concretely how to predict seismic response of structures by ANN in a practical example. This paper identifies the structural model of a shear system by the feed forward network of the BP (back propagation) algorithm. First of all, the BP network described in this paper has been trained by practical seismic waves and the corresponding imitated seismic response. Then the seismic response of structures under other seismic excitation will be predicted by BP network of ANN that had been trained. The new ANN can identify the dynamical character and predict dynamical response of structures exactly. This paper also discusses the effects of network topology and input layer elements on the network learning and prediction, etc. 展开更多
关键词 artificial neural networks(ANN) seismic response of structure back propagation
下载PDF
Predicting of the Fibrous Filters Efficiency for the Removal Particles from Gas Stream by Artificial Neural Network
20
作者 érica Regina Filletti Juliana Maria da Silva Valdemir Garcia Ferreira 《Advances in Chemical Engineering and Science》 2015年第3期317-327,共11页
In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of ... In this paper, artificial neural networks are used for predicting single fiber efficiency in the process of removing smaller particles from gas stream by fiber filters. For this, numerical simulations are obtained of a classic model of literature for fiber efficiency, which is numerically solved along with the convection diffusion equation in polar coordinates for particle concentration, with associated initial and boundary conditions. A sufficient number of examples from two numerical simulations are employed to construct a database, from which parameters of a novel neural model are adjusted. This model is constructed based on the back propagation algorithm in order to map two features, namely Peclet number and packing density, which are extracted from the numerical simulations into the corresponding single fiber efficiency. The results indicate that the developed neural model can be trained in a reasonable computational time and is capable of estimating single fiber efficiency from examples of the test set with a maximum error of 1.7%. 展开更多
关键词 artificial neural network BACK propagation Algorithm Fiber FILTERS Particle CAPTURE
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部