The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bondedparticle models(BPMs). In previous studies, the Brazilian disc has typically been trim...The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bondedparticle models(BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness(particle and bond) and strength(bond) of the boundary are set at less than and greater than those of the disc assembly, respectively,which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.展开更多
For solving the computationally intensive problem encountered by the discrete element method(DEM)in simulating large-scale engineering problems,it is essential to establish a numerical model that can effectively simul...For solving the computationally intensive problem encountered by the discrete element method(DEM)in simulating large-scale engineering problems,it is essential to establish a numerical model that can effectively simulate large-scale rocks.In this study,the coarse-graining effect of a linear-Mindlin with bonding model was studied in the unconfined compression strength(UCS)and Brazilian tensile strength(BTS)tests.We found that the main reason for the coarse-graining effect of the BTS tests is that the type I fracture toughness is positively correlated with the size of the particles.Based on the results analysis and fracture mechanics,the coarse-grained(CG)modeling theory was combined with a bonded particle model(BPM)for the first time and a coarse-grained bonded particle model(CG-BPM)was developed,which can be effectively used to model the tensile strength of large-scale rocks with different particle sizes.The excavation damage zone(EDZ)in an underground research laboratory(URL)was selected as an application case,which shows that the coarse-grained bonding model presented in this paper is more accurate and reliable than the traditional one in large-scale rock simulation,at least in the scenario where tensile failure is dominant.展开更多
This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has be...This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.展开更多
In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together w...In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together with parallel bonds(the bonded particle model,BPM),various shapes and block fractures can be simulated.The main aim of the BPM is to simulate a continuous material in which the stress distribution is continuous.Since the existing stress result for a single particle is an average value over the particle’s area,stress results do not exist in the area between particles.In this paper,the stress value for a single two-dimensional DEM particle is deduced.A stress recovery procedure with a linear stress function for a triangular element generated by the centroids of three bonded particles is proposed.In this way,the recovered stress field for the whole mesh composed of all triangular elements is continuous.A stress gradient exists in the whole mesh.This can also provide more accurate stress values for judging a fracture inside a block.Symmetrical and asymmetrical models are simulated by the BPM and FEM.Similar to the FEM results,the recovered stress results for the BPM can describe the stress distribution in the simulated continuous blocks.For the model with the theoretical stress solution,the recovered result and the theoretical solution coincide well.展开更多
离散元法(Discrete Element Method,DEM)是一种非连续介质力学数值计算方法,已被广泛应用于矿物加工破碎过程的研究,用于分析和求解离散系统中颗粒的运动规律、碰撞和破碎特性,为研究矿物的破碎机理、优化破碎设备的工作参数和机械结构...离散元法(Discrete Element Method,DEM)是一种非连续介质力学数值计算方法,已被广泛应用于矿物加工破碎过程的研究,用于分析和求解离散系统中颗粒的运动规律、碰撞和破碎特性,为研究矿物的破碎机理、优化破碎设备的工作参数和机械结构提供了重要的理论研究手段。介绍了离散元法数值模拟技术中两种用于模拟矿物颗粒破碎的仿真模型:键合粒子模型(Bonded Particle Model,BPM)和颗粒替换模型(Particle Replacement Model,PRM),并对两种模型的基本原理、模型缺陷、优化进展及应用进行了概述,综述了利用DEM研究圆锥破碎机、颚式破碎机、冲击式破碎机、反击式破碎机等各类破碎设备在不同矿物特性、设备结构以及工作参数影响下的破碎性能表现的研究进展,讨论了DEM在碎矿研究领域存在的优势及局限性,并提出了基于DEM研究矿物破碎问题的发展方向。展开更多
Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics o...Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics of nonspherical particles using discrete element method(DEM)simulations.Three different particle shapes,i.e.spherical,cuboidal and cylindrical,are investigated.Constituent spheres are agglomerated with bridging bonds to model the breakage characteristics under impact conditions.The effect of agglomerate shapes on the breakage pattern,damage ratio,and fragment size distribution is fully investigated.By using a newly proposed oblique impact model,unified breakage master surfaces are theoretically constructed for all the particle shapes under oblique impact conditions.The developed approach can be applied to modelling particulate processes where nonspherical particles and oblique impact breakage are prevailing.展开更多
From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics i...From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure.展开更多
The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes.The study of this coupling interaction is essential for under...The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes.The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering.In this study,an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation.A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings.Good agreement between the numerical results and experimental data are obtained,particularly in terms of the compression,tension,and elastic responses of granite.With this improved model,the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.展开更多
Using tunnel boring machines to excavate high-strength intact rock masses is becoming more common.Due to the interactions between disc cutters and rocks,abnormal wear of disc cutters,especially cutter chipping,has bec...Using tunnel boring machines to excavate high-strength intact rock masses is becoming more common.Due to the interactions between disc cutters and rocks,abnormal wear of disc cutters,especially cutter chipping,has become a common phenomenon.Existing research has mainly focused on normal wear of disc cutters without addressing abnormal wear cases.This study used the disc cutter consumption data of a tunnel project in China to investigate the abovementioned problem based on field research.According to the fail-ure patterns and fracture surface characteristics,the cutter chipping patterns were mainly categorized into four types:granule chipping,patch chipping,primary collapse,and secondary collapse.To further simulate the evolution of disc cutter chipping,based on the linear plastic bond model,a new contact model called the modified plastic bond(MPB)model was proposed to solve the metal simulation prob-lem in Particle Flow Code software.To this end,a set of uniaxial tensile and compressive tests were initially conducted to verify the applicability of the MPB model.Then,a series of three-dimensional rock-cutting simulation tests were conducted to reflect the evolu-tionary processes involved in each type of cutter chipping.The cutter chipping mechanism and morphological characteristics were clas-sified and summarized in detail.The results revealed that the cutting speed and penetration growth led to a rising trend in the probability and intensity of the cutter chipping.The presence of initial defects also induced an adverse effect on the service life of the cutter.The results indicated suitable working conditions for the cutter and suggested ways to control tunneling parameters and avoid frequent cutter chipping cases.展开更多
We investigated the effects of model size and particle size on the simulated macroscopic mechanical properties, uniaxial compressive strength, Young's modulus, and flexural strength of sea-ice samples, using the disc...We investigated the effects of model size and particle size on the simulated macroscopic mechanical properties, uniaxial compressive strength, Young's modulus, and flexural strength of sea-ice samples, using the discrete-element method (DEM) with a bonded-particle model. Many different samples with a hexagonal-close-packing pattern and a unique particle size were considered, and several ratios of particle size to sample dimension (D/L) were studied for each sample. The macroscopic mechanical properties simulated by the DEM decrease monotonously with an increase in D/L. For different samples with different particle sizes, the macroscopic mechanical properties will be identical when D/L is constant. The quanti- tative relationships between macroscopic mechanical properties and ratio of particle size to sample size are important aspects in engineering applications of the DEM method. The results provide guidance on the choice of a particle size in the DEM simulation for numerical samples with a hexagonal-close-packing pattern.展开更多
基金Support provided by the National Basic Research Program of China (2015CB258500, 2015CB058102, 2014CB046904)
文摘The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bondedparticle models(BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness(particle and bond) and strength(bond) of the boundary are set at less than and greater than those of the disc assembly, respectively,which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.52025091)the Taishan Scholars Program(NO.tsqn202312192)the Youth Innovation Team of Shandong Higher Education Institutions(2022KJ214)。
文摘For solving the computationally intensive problem encountered by the discrete element method(DEM)in simulating large-scale engineering problems,it is essential to establish a numerical model that can effectively simulate large-scale rocks.In this study,the coarse-graining effect of a linear-Mindlin with bonding model was studied in the unconfined compression strength(UCS)and Brazilian tensile strength(BTS)tests.We found that the main reason for the coarse-graining effect of the BTS tests is that the type I fracture toughness is positively correlated with the size of the particles.Based on the results analysis and fracture mechanics,the coarse-grained(CG)modeling theory was combined with a bonded particle model(BPM)for the first time and a coarse-grained bonded particle model(CG-BPM)was developed,which can be effectively used to model the tensile strength of large-scale rocks with different particle sizes.The excavation damage zone(EDZ)in an underground research laboratory(URL)was selected as an application case,which shows that the coarse-grained bonding model presented in this paper is more accurate and reliable than the traditional one in large-scale rock simulation,at least in the scenario where tensile failure is dominant.
基金Financial support provided by the U.S. Department of Energy under DOE Grant No. DE-FE0002760
文摘This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.
基金This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘In the simulation of discontinuous block systems,the discrete element method(DEM)has better computational efficiency and convergence than the finite element method(FEM).When several DEM particles are bonded together with parallel bonds(the bonded particle model,BPM),various shapes and block fractures can be simulated.The main aim of the BPM is to simulate a continuous material in which the stress distribution is continuous.Since the existing stress result for a single particle is an average value over the particle’s area,stress results do not exist in the area between particles.In this paper,the stress value for a single two-dimensional DEM particle is deduced.A stress recovery procedure with a linear stress function for a triangular element generated by the centroids of three bonded particles is proposed.In this way,the recovered stress field for the whole mesh composed of all triangular elements is continuous.A stress gradient exists in the whole mesh.This can also provide more accurate stress values for judging a fracture inside a block.Symmetrical and asymmetrical models are simulated by the BPM and FEM.Similar to the FEM results,the recovered stress results for the BPM can describe the stress distribution in the simulated continuous blocks.For the model with the theoretical stress solution,the recovered result and the theoretical solution coincide well.
基金the financial support from National Natural Science Foundation of China Excellent Young Scientists Fund Program(Overseas)(grant No.YQ2023-22)Shandong Excellent YoungsScientistsFund Program(Overseas)(grant No.2022HWYQ-020)Shenzhen Science and TechnologyProgram(grant No.RCBS20200714114910354,JCYJ20220530141016036 and GJHZ20200731095006019).
文摘Particle breakage commonly occurs during processing of particulate materials,but a mechanistic model of particle impact breakage is not fully established.This article presents oblique impact breakage characteristics of nonspherical particles using discrete element method(DEM)simulations.Three different particle shapes,i.e.spherical,cuboidal and cylindrical,are investigated.Constituent spheres are agglomerated with bridging bonds to model the breakage characteristics under impact conditions.The effect of agglomerate shapes on the breakage pattern,damage ratio,and fragment size distribution is fully investigated.By using a newly proposed oblique impact model,unified breakage master surfaces are theoretically constructed for all the particle shapes under oblique impact conditions.The developed approach can be applied to modelling particulate processes where nonspherical particles and oblique impact breakage are prevailing.
基金Supports from the University Transportation Center for Underground Transportation Infrastructure(UTC-UTI)at the Colorado School of Mines for funding this research under Grant No.69A3551747118 from the US Department of Transportation(DOT)the Fundamental Research Funds for the Central Universities under Grant No.A0920502052401-210 are gratefully acknowledged.
文摘From a practical point of view,grain structure heterogeneities are key parameters that control the rock response and still remains a challenge to incorporate in a quantitative manner.One of the less discussed topics in the context of the grain-based model(GBM)in the particle flow code(PFC)is the contact heterogeneities and the appropriate contact model to mimic the grain boundary behavior.Generally,the smooth joint(SJ)model and linear parallel bond(LPB)model are used to simulate the grain boundary behavior.However,the literature does not document the suitability of different models for specific problems.Another challenge in implementing GBM in PFC is that only a single bonding parameter is used at the grain boundaries.The aim of this study is to investigate the responses of a laboratory-scale specimen with SJ and LPB models,considering grain boundary heterogeneous and homogeneous contact parameters.Uniaxial and biaxial compression tests are performed to calibrate the response of Creighton granite.The stressestrain curves,volumetric dilation,inter-crack(crack in the grain boundary),and intra-crack(crack within the grain)development,and failure patterns associated with different contact models are examined.It was found that both the SJ and LPB models can reproduce the pre-peak behavior observed for a granitic rock type.However,the LPB model is unable to reproduce the post-peak behavior.Due to the large interlocking effect originating from the balls in contact and the ball size in the LPB model,local dilation is induced at the grain boundaries.This overestimates the volumetric dilation and residual shear strength.The LPB model tends to result in discontinuous inter-cracks and stress localization in the rock specimen,resulting in fine fragments at the rock surface during failure.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX21_0494)the National Natural Science Foundation of China (Grant Nos.51679071 and 41831278)the Key Laboratory of the Ministry of Education on Safe Mining of Deep Metal Mines (No.DM2019K02).
文摘The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes.The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering.In this study,an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation.A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings.Good agreement between the numerical results and experimental data are obtained,particularly in terms of the compression,tension,and elastic responses of granite.With this improved model,the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.
基金supported by the National Natural Science Foundation of China(Grant No.52078377)the Key Field Science and Technology Project of Yunnan Province(Grant No.202002AC080002)supported by the China Atomic Energy Authority(CAEA)through the Geological Disposal Program.
文摘Using tunnel boring machines to excavate high-strength intact rock masses is becoming more common.Due to the interactions between disc cutters and rocks,abnormal wear of disc cutters,especially cutter chipping,has become a common phenomenon.Existing research has mainly focused on normal wear of disc cutters without addressing abnormal wear cases.This study used the disc cutter consumption data of a tunnel project in China to investigate the abovementioned problem based on field research.According to the fail-ure patterns and fracture surface characteristics,the cutter chipping patterns were mainly categorized into four types:granule chipping,patch chipping,primary collapse,and secondary collapse.To further simulate the evolution of disc cutter chipping,based on the linear plastic bond model,a new contact model called the modified plastic bond(MPB)model was proposed to solve the metal simulation prob-lem in Particle Flow Code software.To this end,a set of uniaxial tensile and compressive tests were initially conducted to verify the applicability of the MPB model.Then,a series of three-dimensional rock-cutting simulation tests were conducted to reflect the evolu-tionary processes involved in each type of cutter chipping.The cutter chipping mechanism and morphological characteristics were clas-sified and summarized in detail.The results revealed that the cutting speed and penetration growth led to a rising trend in the probability and intensity of the cutter chipping.The presence of initial defects also induced an adverse effect on the service life of the cutter.The results indicated suitable working conditions for the cutter and suggested ways to control tunneling parameters and avoid frequent cutter chipping cases.
基金This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41606213, 51639004, 51579054).
文摘We investigated the effects of model size and particle size on the simulated macroscopic mechanical properties, uniaxial compressive strength, Young's modulus, and flexural strength of sea-ice samples, using the discrete-element method (DEM) with a bonded-particle model. Many different samples with a hexagonal-close-packing pattern and a unique particle size were considered, and several ratios of particle size to sample dimension (D/L) were studied for each sample. The macroscopic mechanical properties simulated by the DEM decrease monotonously with an increase in D/L. For different samples with different particle sizes, the macroscopic mechanical properties will be identical when D/L is constant. The quanti- tative relationships between macroscopic mechanical properties and ratio of particle size to sample size are important aspects in engineering applications of the DEM method. The results provide guidance on the choice of a particle size in the DEM simulation for numerical samples with a hexagonal-close-packing pattern.