期刊文献+
共找到7,184篇文章
< 1 2 250 >
每页显示 20 50 100
Self-polarized RGB device realized by semipolar micro-LEDs and perovskite-in-polymer films for backlight applications 被引量:1
1
作者 Tingwei Lu Yue Lin +8 位作者 Tianqi Zhang Yue Huang Xiaotong Fan Shouqiang Lai Yijun Lu Hao-Chung Kuo Zhong Chen Tingzhu Wu Rong Zhang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第3期35-49,共15页
In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polar... In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies. 展开更多
关键词 halide perovskite LIGHT-EMITTING-DIODES polarized emission nanocrystals stability
下载PDF
Microwave shock motivating the Sr substitution of 2D porous GdFeO_(3) perovskite for highly active oxygen evolution 被引量:1
2
作者 Jinglin Xian Huiyu Jiang +10 位作者 Zhiao Wu Huimin Yu Kaisi Liu Miao Fan Rong Hu Guangyu Fang Liyun Wei Jingyan Cai Weilin Xu Huanyu Jin Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期232-241,I0006,共11页
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ... The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite. 展开更多
关键词 2D materials perovskite MICROWAVE ELECTROCATALYSIS Oxygen evolution reaction
下载PDF
High performance wide bandgap perovskite solar cell with low V_(OC) deficit less than 0.4 V 被引量:1
3
作者 Haikuo Guo Fuhua Hou +8 位作者 Xuli Ning Xiaoqi Ren Haoran Yang Rui Liu Tiantian Li Chengjun Zhu Ying Zhao Wei Li Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期313-322,共10页
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p... Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs. 展开更多
关键词 Pb management perovskite solar cell STRAIN Wide bandgap Stability
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
4
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Constructing low-dimensional perovskite network to assist efficient and stable perovskite solar cells
5
作者 Jinwen Gu Xianggang Sun +5 位作者 Pok Fung Chan Xinhui Lu Peng Zeng Jue Gong Faming Li Mingzhen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期625-632,共8页
The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of... The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability. 展开更多
关键词 Low-dimensional perovskite NETWORK Carrier transport perovskite solar cell Stability
下载PDF
Stabilizing perovskite precursors with the reductive natural amino acid for printable mesoscopic perovskite solar cells
6
作者 Wenjing Hu Jian Yang +9 位作者 Chuang Yang Xufeng Xiao Chaoyang Wang Zhaozhen Cui Qiaojiao Gao Jianhang Qi Minghao Xia Yaqiong Su Anyi Mei Hongwei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期32-39,I0003,共9页
Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device perform... Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device performance and reproducibility.Here,we utilize a reductive natural amino acid,Nacetylcysteine(NALC),to stabilize the precursor solution for printable carbon-based hole-conductorfree mesoscopic perovskite solar cells.We find that I_(2) can be generated in the aged solution containing methylammonium iodide(MI) in an inert atmosphere and speed up the MA-FA^(+)(formamidinium) reaction which produces large-size cations and hinders the formation of perovskite phase.NALC effectively stabilizes the precursor via its sulfhydryl group which reduces I_(2) back to I^(-)and provides H^(+).The NALC-stabilized precursor which is aged for 1440 h leads to devices with a power conversion efficiency equivalent to 98% of that for devices prepared with the fresh precursor.Furthermore,NALC improves the device power conversion efficiency from 16.16% to 18.41% along with enhanced stability under atmospheric conditions by modifying grain boundaries in perovskite films and reducing associated defects. 展开更多
关键词 perovskite solar cells perovskite precursor Degradation STABILIZATION Reductive natural amino acid
下载PDF
Boosting MA-based two-dimensional Ruddlesden-Popper perovskite solar cells by incorporating a binary spacer
7
作者 Xue Dong Yinhao Tang +10 位作者 Yiqun Li Xin Li Yuzhen Zhao Wenqi Song Fangmin Wang Shudong Xu Yipeng Zhou Chenxin Ran Zongcheng Miao Lin Song Zhongbin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期348-356,I0008,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ... Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts. 展开更多
关键词 perovskite solar cells Two-dimensional Ruddlesden-Popper perovskite Binary spacers Stability
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
8
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Chlorofullerene C_(60)Cl_(6) Enables Efficient and Stable Tin-Based Perovskite Solar Cells
9
作者 Jingfu Chen Chengbo Tian +8 位作者 Chao Sun Panpan Yang Wenjing Feng Lingfang Zheng Liu Yang Enlong Hou Jiefeng Luo Liqiang Xie Zhanhua Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期176-183,共8页
Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to po... Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials. 展开更多
关键词 crystallization regulation defect passivation fullerene derivative perovskites solar cell tin-based perovskite
下载PDF
Enhanced performance of solution-processed carbon nanotube transparent electrodes in foldable perovskite solar cells through vertical separation of binders by using eco-friendly parylene substrate
10
作者 Unsoo Kim Jeong-Seok Nam +3 位作者 Jungjin Yoon Jiye Han Mansoo Choi Il Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期83-93,共11页
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat... The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules. 展开更多
关键词 double-walled carbon nanotubes parylene substrates perovskite modules perovskite solar cells solution-processable electrodes surfactant removal
下载PDF
Pressure-Induced Distinct Self-Trapped Exciton Emission in Sb^(3+)-Doped Cs_(2)NaInCl_(6)Double Perovskite
11
作者 冯友佳 陈亚平 +10 位作者 王乐瑶 王家祥 常断华 袁亦方 武敏 付瑞净 张丽丽 王庆林 王凯 郭海中 王玲瑞 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期18-43,共26页
The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminesc... The Cs_(2)NaInCl_(6) double perovskite is one of the most promising lead-free perovskites due to its exceptional stability and straightforward synthesis.However,it faces challenges related to inefficient photoluminescence.Doping and high pressure are employed to tailor the optical properties of Cs_(2)NaInCl_(6).Herein,Sb^(3+)doped Cs_(2)NaInCl_(6)(Sb^(3+):Cs_(2)NaInCl_(6)) was synthesized and it exhibits blue emission with a photoluminescence quantum yield of up to 37.3%.Further,by employing pressure tuning,a blue stable emission under a very wide range from 2.7 GPa to 9.8 GPa is realized in Sb^(3+):Cs_(2)NaInCl_(6).Subsequently,the emission intensity of Sb^(3+):Cs_(2)NaInCl_(6) experiences a significant increase(3.3 times)at 19.0 GPa.It is revealed that the pressure-induced distinct emissions can be attributed to the carrier self-trapping and detrapping between Cs_(2)NaInCl_(6) and Sb^(3+).Notably,the lattice compression in the cubic phase inevitably modifies the band gap of Sb^(3+):Cs_(2)NaInCl_(6).Our findings provide valuable insights into effects of the high pressure in further boosting unique emission characteristics but also offer promising opportunities for development of doped double perovskites with enhanced optical functionalities. 展开更多
关键词 synthesis perovskite TRAPPING
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
12
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells Tandem solar cells Buffer layer Stability
下载PDF
Effect of drying methods on perovskite films and solar cells
13
作者 Ling Liu Chuantian Zuo +3 位作者 Guang-Xing Liang Hua Dong Jingjing Chang Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期1-5,共5页
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af... The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating. 展开更多
关键词 perovskite FILMS CRITICAL
下载PDF
Efficient Monolithic Perovskite/Silicon Tandem Photovoltaics
14
作者 Yong Wang Yu Wang +1 位作者 Feng Gao Deren Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d... Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs. 展开更多
关键词 2-terminal electrical interconnection perovskite/silicon tandem photovoltaics photon management wide-bandgap perovskites
下载PDF
Accelerating the evaluation of operational lifetimes of perovskite solar cells and modules
15
作者 Fumeng Ren Qian Lu +7 位作者 Xin Meng Jing Zhou Rui Chen Jianan Wang Haixin Wang Sanwan Liu Zonghao Liu Wei Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期1-9,共9页
Compared with the power conversion efficicency,the operational stability of perovskite solar cells(PsCs)remains a major challenge hampering its commercialization.However,conducting a light soaking test under 1 sun ill... Compared with the power conversion efficicency,the operational stability of perovskite solar cells(PsCs)remains a major challenge hampering its commercialization.However,conducting a light soaking test under 1 sun illumination to get a long lifetime is time-consuming and experimentally inefficient.Here,we report an accelerated stability test protocol by aging PsCs under high-intensity light illumination to accelerate the evaluation of their operation stability.It is found that the efficiency degradation rate of a typical inverted PsC is almost linearly dependent on the light intensity within the range of 1 to 4 suns regardless of the encapsulations.The results prove that it can save the light-soaking time by at least 4 times to predict the operation lifetime on the basis of the equivalent light irradiation dose. 展开更多
关键词 perovskite Light-soaking Stability
下载PDF
Buried Interface Molecular Hybrid Enables Efficient Perovskite Solar Cells
16
作者 Tianyu Huang Rui Zhu Deying Luo 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第9期151-152,共2页
Perovskite solar cells(PSCs)with a positive-intrinsicnegative(p–i–n,commonly referred to as“inverted”)structure are becoming commercially attractive due to their superior power conversion efficiency(PCE)and better... Perovskite solar cells(PSCs)with a positive-intrinsicnegative(p–i–n,commonly referred to as“inverted”)structure are becoming commercially attractive due to their superior power conversion efficiency(PCE)and better operational stability as compared to the“normal”structure device.^([1–5])Nonetheless,further improvements in the device performance of inverted PSCs are hampered by interface losses,particularly where the buried interfaces are responsible for perovskite crystallization and chargecarrier extraction.^([6–9]) 展开更多
关键词 ATTRACTIVE perovskite CRYSTALLIZATION
下载PDF
Chemical vapor deposition for perovskite solar cells and modules
17
作者 Zhihao Tao Yuxuan Song +2 位作者 Baochang Wang Guoqing Tong Liming Ding 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期1-4,共4页
Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The ... Metal halide perovskites are promising materials for solar cells because of high power conversion efficiency(PCE),tun-able bandgap,high defect tolerance,long carrier diffusion length,and low-cost fabrication[1-7].The PCE for perovskite solar cells(PSCs)reaches 26.14%for single-junction cells,29.1%for perovskite/perovskite tandem cells and 33.9%for perovskite/silicon tandem cells,being comparable to that for silicon and other thin-film solar cells[8-10].Perovskite solar cells have been made by solution methods including spin-coat-ing,blade coating and printing[11,12]. 展开更多
关键词 perovskite BLADE FILM
下载PDF
A magic organic molecule assembled capping layer enables airprocessed α-FAPbI_(3) perovskite solar cell with state-of-the-art performances
18
作者 Yulong Wang Xiuwen Xu +1 位作者 Shujuan Liu Qiang Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期3-6,共4页
The black-phase formamidine-lead iodide(α-FAPbI_(3)),boasting an optimal bandgap of 1.5 eV,stands out as a premier choice for narrow-bandgap perovskite solar cells(PSCs),achieving a certified power conversion efficie... The black-phase formamidine-lead iodide(α-FAPbI_(3)),boasting an optimal bandgap of 1.5 eV,stands out as a premier choice for narrow-bandgap perovskite solar cells(PSCs),achieving a certified power conversion efficiency(PCE)of 26.1%[1−5].This impressive performance hinges on the orderly and homogeneous crystallization ofα-phase pure FAPbI_(3),facilitated by coordinating solvents such as dimethyl sulfoxide(DMSO)to form intermediates like PbI_(2)-DMSO complex(D-complex).The D-complex plays a pivotal role in crystallization thermodynamics,enabling the direct formation of α-FAPbI_(3) without the photoinactiveδ-phase[6−9].However,DMSO,a commonly used coordinating solvent,is highly hygroscopic and prone to hydration upon moisture exposure.This tendency leads to incomplete perovskite crystallization and accelerates the transformation of α-FAPbI_(3) into itsδ-phase[2,10].Consequently,the best-performing α-FAPbI_(3)PSCs must be processed in an inert atmosphere with strictly controlled relative humidity(RH)and suffers from relatively poor reproducibility.Given the hard-to-control atmosphere at industrial scale,it is challenging yet imperative to eliminate the negative effects stemming from hygroscopic coordinating solvents[11−13]. 展开更多
关键词 perovskite CRYSTALLIZATION enable
下载PDF
Nickel oxide for perovskite tandem solar cells
19
作者 Ting Nie Yuanhang Cheng Zhimin Fang 《Journal of Semiconductors》 EI CAS CSCD 2024年第11期1-7,共7页
Perovskite tandem solar cells(TSCs)are popular for their ability to surpass the Shockley-Queisser(S-Q)limit of singlejunction solar cells[1-9].Currently,there are mainly four types of perovskite TSCs,including perovsk... Perovskite tandem solar cells(TSCs)are popular for their ability to surpass the Shockley-Queisser(S-Q)limit of singlejunction solar cells[1-9].Currently,there are mainly four types of perovskite TSCs,including perovskite/silicon,perovskite/copper indium gallium selenide(CIGS). 展开更多
关键词 perovskite LIMIT COPPER
下载PDF
Textured Perovskite/Silicon Tandem Solar Cells Achieving Over 30% Efficiency Promoted by 4-Fluorobenzylamine Hydroiodide
20
作者 Jingjing Liu Biao Shi +14 位作者 Qiaojing Xu Yucheng Li Yuxiang Li Pengfei Liu Zetong SunLi Xuejiao Wang Cong Sun Wei Han Diannan Li Sanlong Wang Dekun Zhang Guangwu Li Xiaona Du Ying Zhao Xiaodan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期557-570,共14页
Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ... Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs. 展开更多
关键词 perovskite crystallization (111)preferred orientation Defect passivation perovskite/silicon tandem solar cells
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部