In this paper, Al2O3 ultrathin film used as the surface passivation layer for A1GaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induc...In this paper, Al2O3 ultrathin film used as the surface passivation layer for A1GaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition (PECVD) SiN passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency (RF) performance are achieved after applying Al2O3+BCB passivation. For the Al2O3+BCB passivated device with a 0.7μm gate, the value of fmax reaches up to 100 GHz, but it decreases to 40 GHz for SiN HEMT. The fmax/ft ratio (〉 4) is also improved after Al2O3+BCB passivation. The capacitancevoltage (C-V) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states (on the order of magnitude of 1010 cm-2) than that obtained at commonly studied SiN HEMT.展开更多
Solubilities and properties (density, conductivity and pH value) of solutions in the quaternary system Li +,K +//CO 2- 3,B 4O 2- 7-H 2O at 288 K were experimentally studied with the isothermal equilibrium method. The ...Solubilities and properties (density, conductivity and pH value) of solutions in the quaternary system Li +,K +//CO 2- 3,B 4O 2- 7-H 2O at 288 K were experimentally studied with the isothermal equilibrium method. The phase diagram of the system consisted of two invariant points E and F, five univariant curves, and four crystallization fields that belonged to K 2CO 3·3/2H 2O,Li 2 B 4O 7·3H 2O, K 2 B 4O 7 ·4H 2O and Li 2CO 3. The composition of the solution corresponding to E was w(CO 2- 3)=2.27 %, w(B 4O 2- 7) =6.05 %, w(K + ) =4.30%,w(Li + )=0.30 % and the equilibrium solids were Li 2 B 4O 7· 3H 2O+K 2 B 4O 7·4H 2O+Li 2CO 3;The composition of the solution for F was w(CO 2- 3) =22.45%,w(B 4O 2- 7)=1.88%,w(K + )=29.96%,w(Li + )=0.03% and the equilibrium solids were K 2CO 3·3/2H 2O+ K 2 B 4O 7·4H 2O+Li 2CO 3. K 2CO 3 possesses strong salting-out effect on K 2 B 4O 7,Li 2CO 3 and Li 2 B 4O 7.展开更多
文摘In this paper, Al2O3 ultrathin film used as the surface passivation layer for A1GaN/GaN high electron mobility transistor (HEMT) is deposited by thermal atomic layer deposition (ALD), thereby avoiding plasma-induced damage and erosion to the surface. A comparison is made between the surface passivation in this paper and the conventional plasma enhanced chemical vapor deposition (PECVD) SiN passivation. A remarkable reduction of the gate leakage current and a significant increase in small signal radio frequency (RF) performance are achieved after applying Al2O3+BCB passivation. For the Al2O3+BCB passivated device with a 0.7μm gate, the value of fmax reaches up to 100 GHz, but it decreases to 40 GHz for SiN HEMT. The fmax/ft ratio (〉 4) is also improved after Al2O3+BCB passivation. The capacitancevoltage (C-V) measurement demonstrates that Al2O3+BCB HEMT shows quite less density of trap states (on the order of magnitude of 1010 cm-2) than that obtained at commonly studied SiN HEMT.
文摘Solubilities and properties (density, conductivity and pH value) of solutions in the quaternary system Li +,K +//CO 2- 3,B 4O 2- 7-H 2O at 288 K were experimentally studied with the isothermal equilibrium method. The phase diagram of the system consisted of two invariant points E and F, five univariant curves, and four crystallization fields that belonged to K 2CO 3·3/2H 2O,Li 2 B 4O 7·3H 2O, K 2 B 4O 7 ·4H 2O and Li 2CO 3. The composition of the solution corresponding to E was w(CO 2- 3)=2.27 %, w(B 4O 2- 7) =6.05 %, w(K + ) =4.30%,w(Li + )=0.30 % and the equilibrium solids were Li 2 B 4O 7· 3H 2O+K 2 B 4O 7·4H 2O+Li 2CO 3;The composition of the solution for F was w(CO 2- 3) =22.45%,w(B 4O 2- 7)=1.88%,w(K + )=29.96%,w(Li + )=0.03% and the equilibrium solids were K 2CO 3·3/2H 2O+ K 2 B 4O 7·4H 2O+Li 2CO 3. K 2CO 3 possesses strong salting-out effect on K 2 B 4O 7,Li 2CO 3 and Li 2 B 4O 7.