Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and ...Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%.展开更多
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ...A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis.展开更多
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I...Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.展开更多
Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the curr...Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the current value in real-time. And in order to enhance the signal processing capabilities, the feedback of output layer nodes is increased. A hybrid learning algorithm based on genetic algorithm (GA) and error back propagation algorithm (BP) is used to adjust the weight values of the network, which can accelerate the rate of convergence and avoid getting into local optimum. Finally, the improved neural network is utilized to identify underwater vehicle (UV) ' s hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm can improve the learning rate of convergence and identification nrecision.展开更多
The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation...The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation,aircraft maneuver interference field,and geomagnetic field.In this paper,appropriate physical features and the modular feedforward neural network(MFNN)with Levenberg-Marquard(LM)back propagation algorithm are adopted to supervised learn fluctuation of measuring signals and separate the interference magnetic field from the measurement data.LM algorithm is a kind of least square estimation algorithm of nonlinear parameters.It iteratively calculates the jacobian matrix of error performance and the adjustment value of gradient with the regularization method.LM algorithm’s computing efficiency is high and fitting error is very low.The fitting performance and the compensation accuracy of LM-MFNN algorithm are proved to be much better than those of TOLLES-LAWSON(T-L)model with the linear least square(LS)solution by fitting experiments with five different aeromagnetic surveys’data.展开更多
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep...Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.展开更多
Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty per...Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield.展开更多
Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is dif...Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.展开更多
Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper ...Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.展开更多
In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the dens...In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better.展开更多
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt...Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.展开更多
Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, incl...Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.展开更多
The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these...The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these security issues,the safety protection technology of the in-vehicle system has become a focus of research.Using the advanced autoencoder network and recurrent neural network in deep learning,we investigated the intrusion detection system based on the in-vehicle system.We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior.In order to verify the accuracy and efficiency of the proposed model,it was evaluated using real vehicle data.The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior.The parameters of the model are self-iteratively updated using the time-based back propagation algorithm.We verified that the model proposed in this study can reach a nearly 96%accurate detection rate.展开更多
This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbala...This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance(QCM) principle,and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value(A),root-mean-square value(RMS), shape factor value(S_f), crest factor value(C_f), impulse factor value(I_f), clearance factor value(CL_f), kurtosis factor value(K_v) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis(PCA) method. Finally the back propagation(BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively.展开更多
Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos...Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..展开更多
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol...Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.展开更多
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ...In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.展开更多
To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this stu...To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.展开更多
This paper describes a new method to identify the type of fabric weave by using a neural network classifier. The characteristic parameters of the input layer, derived from fabric image, are composed of the Markov rand...This paper describes a new method to identify the type of fabric weave by using a neural network classifier. The characteristic parameters of the input layer, derived from fabric image, are composed of the Markov random field character, the difference between the maximum and the minimum of gray level projections in weft and warp directions, the area ratio of the brightness region to the total area in image, the weft and the warp yarn count. The experimental results show that the neural network classifier can effectively classify fabric weave with 98.33% of accuracy, which is helpful in the recognition of fabric weave parameters.展开更多
An assessment method for the environmental quality of surface water was established based on artificial neural networks (ANN), in which different classification values were trained as learning samples. The assessment ...An assessment method for the environmental quality of surface water was established based on artificial neural networks (ANN), in which different classification values were trained as learning samples. The assessment results from the major river section in Datong city indicated that the ANN model have characteristics of simple operation and distinct and quantitative expression of assessment results in comparison with the standard index method for the environmental quality assessment of surface water.展开更多
文摘Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%.
基金the Natural Science Foundation of China (No. 30070211).
文摘A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis.
基金National Natural Science Foundation of China(No. 60474021)
文摘Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.
基金Supported by the Postdoctoral Science Foundation of China( No. 20100480964 ) , the Basic Research Foundation of Central University ( No. HEUCF100104) and the National Natural Science Foundation of China (No. 50909025/E091002).
文摘Based on the structure of Elman and Jordan neural networks, a new dynamic neural network is constructed. The network can remember the past state of the hidden layer and adjust the effect of the past signal to the current value in real-time. And in order to enhance the signal processing capabilities, the feedback of output layer nodes is increased. A hybrid learning algorithm based on genetic algorithm (GA) and error back propagation algorithm (BP) is used to adjust the weight values of the network, which can accelerate the rate of convergence and avoid getting into local optimum. Finally, the improved neural network is utilized to identify underwater vehicle (UV) ' s hydrodynamic model, and the simulation results show that the neural network based on hybrid learning algorithm can improve the learning rate of convergence and identification nrecision.
基金National key special projects for major scientific instruments and equipment development(2017YFF0107400)。
文摘The magnetic compensation of aeromagnetic survey is an important calibration work,which has a great impact on the accuracy of measurement.In an aeromagnetic survey flight,measurement data consists of diurnal variation,aircraft maneuver interference field,and geomagnetic field.In this paper,appropriate physical features and the modular feedforward neural network(MFNN)with Levenberg-Marquard(LM)back propagation algorithm are adopted to supervised learn fluctuation of measuring signals and separate the interference magnetic field from the measurement data.LM algorithm is a kind of least square estimation algorithm of nonlinear parameters.It iteratively calculates the jacobian matrix of error performance and the adjustment value of gradient with the regularization method.LM algorithm’s computing efficiency is high and fitting error is very low.The fitting performance and the compensation accuracy of LM-MFNN algorithm are proved to be much better than those of TOLLES-LAWSON(T-L)model with the linear least square(LS)solution by fitting experiments with five different aeromagnetic surveys’data.
基金supported by the National Natural Science Foundation of China(Grant Nos.51979253,51879245)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821).
文摘Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.
基金support of RUSA-Phase 2.0 grant sanctioned vide Letter No.F.24-51/2014-U,Policy(TNMulti-Gen),Dep.of Edn.Govt.of India,Dt.09.10.2018.
文摘Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth.Rice is propagated from the seeds of paddy and it is a stable food almost used byfifty percent of the total world population.The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains.This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help of Evolutionary Computation Techniques.Most of the researchers used to relay on historical records of meteorological parameters to predict the yield of paddy.There is a lack in analyzing the day to day impact of meteorological parameters such as direction of wind,relative humidity,Instant Wind Speed in paddy cultivation.The real time meteorological data collected and analysis the impact of weather parameters from the day of paddy sowing to till the last day of paddy harvesting with regular time series.A Robust Optimized Artificial Neural Network(ROANN)Algorithm with Genetic Algorithm(GA)and Multi Objective Particle Swarm Optimization Algorithm(MOPSO)proposed to predict the factors that to be concentrated by farmers to improve the paddy yield in cultivation.A real time paddy data collected from farmers of Tamilnadu and the meteorological parameters were matched with the cropping pattern of the farmers to construct the database.The input parameters were optimized either by using GA or MOPSO optimization algorithms to reconstruct the database.Reconstructed database optimized by using Artificial Neural Network Back Propagation Algorithm.The reason for improving the growth of paddy was identified using the output of the Neural Network.Performance metrics such as Accuracy,Error Rate etc were used to measure the performance of the proposed algorithm.Comparative analysis made between ANN with GA and ANN with MOPSO to identify the recommendations for improving the paddy yield.
文摘Brushless DC motor ( BLDCM) speed servo system is multivariable,nonlinear and strong coupling. The parameter variation, the cogging torque and the load disturbance easily influence its performance. Therefore,it is difficult to achieve superior performance by using the conventional PID controller. To solve the deficiency,the paper represents the algorithm of active-disturbance rejection control ( ADRC) based on back-propagation ( BP) neural network. The ADRC is independent on accurate system and its extended-state observer can estimate the disturbance of the system accurately. However,the parameters of Nonlinear Feedback ( NF) in ADRC are difficult to obtain. So in this paper,these parameters are self-turned by the BP neural network. The simulation and experiment results indicate that the ADRC based on BP neural network can improve the performances of the servo system in rapidity,control accuracy,adaptability and robustness.
基金Supported by the National Natural Science Founda-tion of China (49984001)
文摘Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed forward muhi layer perceptron classifier. Experimental results based on the measured GPR, echo signals obtained from the Mei shan railway are presented.
文摘In this paper, a four-layer fuzzy neural network using the Back Propagation (BP) Algorithm and the fuzzy logic was built to study the nonlinear relationships between different physical -chemical factors and the denseness of red tide algae, and to anticipate the denseness of the red tide algae. For the first time, the fuzzy neural network technology was applied to research the prediction of red tide. Compared with BP network and RBF network, the outcome of this method is better.
基金the funding given by Council of Scientific and Industrial Research(CSIR)India through project NWP-31 for this project
文摘Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values.
基金Under the auspices of National Natural Science Foundation of China(No.41201420,41130744)Beijing Nova Program(No.Z111106054511097)Foundation of Beijing Municipal Commission of Education(No.KM201110028016)
文摘Mechanism and modeling of the land subsidence are complex because of the complicate geological background in Beijing, China. This paper analyzed the spatial relationship between land subsidence and three factors, including the change of groundwater level, the thickness of compressible sediments and the building area by using remote sensing and GIS tools in the upper-middle part of alluvial-proluvial plain fan of the Chaobai River in Beijing. Based on the spatial analysis of the land subsidence and three factors, there exist significant non-linear relationship between the vertical displacement and three factors. The Back Propagation Neural Network (BPN) model combined with Genetic Algorithm (GA) was used to simulate regional distribution of the land subsidence. Results showed that at field scale, the groundwater level and land subsidence showed a significant linear relationship. However, at regional scale, the spatial distribution of groundwater depletion funnel did not overlap with the land subsidence funnel. As to the factor of compressible strata, the places with the biggest compressible strata thickness did not have the largest vertical displacement. The distributions of building area and land subsidence have no obvious spatial relationships. The BPN-GA model simulation results illustrated that the accuracy of the trained model during fifty years is acceptable with an error of 51% of verification data less than 20 mm and the average of the absolute error about 32 mm. The BPN model could be utilized to simulate the general distribution of land subsidence in the study area. Overall, this work contributes to better understand the complex relationship between the land subsidence and three influencing factors. And the distribution of the land subsidence can be simulated by the trained BPN-GA model with the limited available dada and acceptable accuracy.
基金This work was supported by Research on the Influences of Network Security Threat Intelligence on Sichuan Government and Enterprises and the Development Countermeasure(Project ID 2018ZR0220)Research on Key Technologies of Network Security Protection in Intelligent Vehicle Based on(Project ID 2018JY0510)+3 种基金the Research on Abnormal Behavior Detection Technology of Automotive CAN Bus Based on Information Entropy(Project ID 2018Z105)the Research on the Training Mechanism of Driverless Network Safety Talents for Sichuan Auto Industry Based on Industry-University Synergy(Project ID 18RKX0667),Research and implementation of traffic cooperative perception and traffic signal optimization of main road(Project ID 2018YF0500707SN)Research and implementation of intelligent traffic control and monitoring system(Project ID 2019YGG0201)Remote upgrade system of intelligent vehicle software(Project ID 2018GZDZX0011).
文摘The increasing use of the Internet with vehicles has made travel more convenient.However,hackers can attack intelligent vehicles through various technical loopholes,resulting in a range of security issues.Due to these security issues,the safety protection technology of the in-vehicle system has become a focus of research.Using the advanced autoencoder network and recurrent neural network in deep learning,we investigated the intrusion detection system based on the in-vehicle system.We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior.In order to verify the accuracy and efficiency of the proposed model,it was evaluated using real vehicle data.The experimental results show that the combination of the two technologies can effectively and accurately identify abnormal boundary behavior.The parameters of the model are self-iteratively updated using the time-based back propagation algorithm.We verified that the model proposed in this study can reach a nearly 96%accurate detection rate.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2013AA030901)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-14-120A2)
文摘This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance(QCM) principle,and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value(A),root-mean-square value(RMS), shape factor value(S_f), crest factor value(C_f), impulse factor value(I_f), clearance factor value(CL_f), kurtosis factor value(K_v) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis(PCA) method. Finally the back propagation(BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively.
文摘Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..
基金the sponsor CSIR (Council of Scientific and Industrial Research), New Delhi for their financial grant to carry out the present research work
文摘Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model.
文摘In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.
基金National Natural Sci ence Foundation of China(No.41476081)the Major Research and Development Project in Shandong Province(No.2019GHY112027)the Shandong Provincial Natural Science Foundation(No.ZR2020MF121).
文摘To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.
文摘This paper describes a new method to identify the type of fabric weave by using a neural network classifier. The characteristic parameters of the input layer, derived from fabric image, are composed of the Markov random field character, the difference between the maximum and the minimum of gray level projections in weft and warp directions, the area ratio of the brightness region to the total area in image, the weft and the warp yarn count. The experimental results show that the neural network classifier can effectively classify fabric weave with 98.33% of accuracy, which is helpful in the recognition of fabric weave parameters.
文摘An assessment method for the environmental quality of surface water was established based on artificial neural networks (ANN), in which different classification values were trained as learning samples. The assessment results from the major river section in Datong city indicated that the ANN model have characteristics of simple operation and distinct and quantitative expression of assessment results in comparison with the standard index method for the environmental quality assessment of surface water.