In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has beco...In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.展开更多
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i...Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors.展开更多
In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), fact...In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.展开更多
The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into...The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into a local minimum,leading to model training failure.This study confirmed that the local minimum problem of the BP neural network method exists in the bathymetry field and cannot be ignored.Furthermore,to solve the local minimum problem of the BP neural network method,a bathymetry method based on a BP neural network and ensemble learning(BPEL)is proposed.First,the remote sensing imagery and training sample were used as input datasets,and the BP method was used as the base learner to produce multiple water depth inversion results.Then,a new ensemble strategy,namely the minimum outlying degree method,was proposed and used to integrate the water depth inversion results.Finally,an ensemble bathymetric map was acquired.Anda Reef,northeastern Jiuzhang Atoll,and Pingtan coastal zone were selected as test cases to validate the proposed method.Compared with the BP neural network method,the root-mean-square error and the average relative error of the BPEL method can reduce by 0.65–2.84 m and 16%–46%in the three test cases at most.The results showed that the proposed BPEL method could solve the local minimum problem of the BP neural network method and obtain highly robust and accurate bathymetric maps.展开更多
The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of netw...The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation.展开更多
AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program w...AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program was developed by a BP neural network.There were 13188 pieces of data selected as training validation.Another 840 eye samples from 425 patients were recruited for reverse verification of training results.Precision of prediction by BP neural network and lenticule thickness error between machine learning and the actual lenticule thickness in the patient data were measured.RESULTS:After training 2313 epochs,the predictive SMILE cutting formula BP neural network models performed best.The values of mean squared error and gradient are 0.248 and 4.23,respectively.The scatterplot with linear regression analysis showed that the regression coefficient in all samples is 0.99994.The final error accuracy of the BP neural network is-0.003791±0.4221102μm.CONCLUSION:With the help of the BP neural network,the program can calculate the lenticule thickness and residual stromal thickness of SMILE surgery accurately.Combined with corneal parameters and refraction of patients,the program can intelligently and conveniently integrate medical information to identify candidates for SMILE surgery.展开更多
The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits ...The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits unintended dis-tortion of image features or it enhances further processing in various applications andfields.This helps to show better results especially for diagnosing diseases.Of late the early prediction of cancer is necessary to prevent disease-causing pro-blems.This work is proposed to identify lung cancer using lung computed tomo-graphy(CT)scan images.It helps to identify cancer cells’affected areas.In the present work,the original input image from Lung Image Database Consortium(LIDC)typically suffers from noise problems.To overcome this,the Gaborfilter used for image processing is highly enhanced.In the next stage,the Spherical Iterative Refinement Clustering(SIRC)algorithm identifies cancer-suspected areas on the CT scan image.This approach can help radiologists and medical experts recognize cancer diseases and syndromes so that serious progress can be avoided in the early stages.These new methods help to remove unwanted por-tions of the CT image and better utilization the image.The subspace extraction of features approach is beneficial for evaluating lung cancer.This paper introduces a novel approach called Contiguous Cross Propagation Neural Network that tends to locate regions afflicted by lung cancer using CT scan pictures(CCPNN).By using the feature values from the fourth step of the procedure,the proposed CCPNN tends to categorize the lesion in the lung nodular site.The efficiency of the suggested CCPNN approach is evaluated using classification metrics such as recall(%),precision(%),F-measure(percent),and accuracy(%).Finally,the incorrect classification ratios are determined to compare the trained networks’effectiveness,through these parameters of CCPNN,it obtains the outstanding per-formance of 98.06%and it has provided the lowest false ratio of 1.8%.展开更多
This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga...This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.展开更多
文摘In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.
基金Xi'an Municipal Bureau of Science and Technology,Science and Technology Program,Medical Research Project。
文摘Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors.
基金supported by the Natural Science Foundation of China under (Nos. 42172293, 4190020747, and 41472268)。
文摘In this study, an orthogonal array experiment is conducted by using a transparent fracture network replica. Image processing and theoretical analysis are performed to investigate the model sealing efficiency(SE), factors influencing SE, and the effect of flowing water on propagation. The results show that grout propagation can be classified into three patterns in the fracture network: sealing off, partial sealing,and major erosion. The factors controlling the SE in a descending order of the amount of influence are the initial water flow speed, fracture aperture, grout take, and gel time. An optimal value for the combination of the gel time and grout take(artificial factors) can result in a good SE. The grouting and seepage pressures are measured, and the results reveal that their variations can indicate the SE to some extent. The SE is good when the seepage pressure at each point increases overall;the frequent fluctuations in the seepage pressure indicate a moderately poor SE, and an overall decline in the seepage pressure indicates a major erosion type. The deflection effect of grouting shows an approximately elliptical propagation with the long axis expanding along the wider fracture opening, demonstrating further application in grouting design.
基金The National Natural Science Foundation of China under contract No.42001401the China Postdoctoral Science Foundation under contract No.2020M671431+1 种基金the Fundamental Research Funds for the Central Universities under contract No.0209-14380096the Guangxi Innovative Development Grand Grant under contract No.2018AA13005.
文摘The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into a local minimum,leading to model training failure.This study confirmed that the local minimum problem of the BP neural network method exists in the bathymetry field and cannot be ignored.Furthermore,to solve the local minimum problem of the BP neural network method,a bathymetry method based on a BP neural network and ensemble learning(BPEL)is proposed.First,the remote sensing imagery and training sample were used as input datasets,and the BP method was used as the base learner to produce multiple water depth inversion results.Then,a new ensemble strategy,namely the minimum outlying degree method,was proposed and used to integrate the water depth inversion results.Finally,an ensemble bathymetric map was acquired.Anda Reef,northeastern Jiuzhang Atoll,and Pingtan coastal zone were selected as test cases to validate the proposed method.Compared with the BP neural network method,the root-mean-square error and the average relative error of the BPEL method can reduce by 0.65–2.84 m and 16%–46%in the three test cases at most.The results showed that the proposed BPEL method could solve the local minimum problem of the BP neural network method and obtain highly robust and accurate bathymetric maps.
基金This research is partially supported by the National Natural Science Foundation of China(Grant No.61772098)Chongqing Technology Innovation and Application Development Project(Grant No.cstc2020jscxmsxmX0150)+2 种基金Chongqing Science and Technology Innovation Leading Talent Support Program(CSTCCXLJRC201908)Basic and Advanced Research Projects of CSTC(No.cstc2019jcyj-zdxmX0008)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900605).
文摘The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation.
基金Supported by the National Natural Science Foundation of China(No.82271100)Jiangsu Province Science and Technology Support Plan Project(No.BE2022805).
文摘AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program was developed by a BP neural network.There were 13188 pieces of data selected as training validation.Another 840 eye samples from 425 patients were recruited for reverse verification of training results.Precision of prediction by BP neural network and lenticule thickness error between machine learning and the actual lenticule thickness in the patient data were measured.RESULTS:After training 2313 epochs,the predictive SMILE cutting formula BP neural network models performed best.The values of mean squared error and gradient are 0.248 and 4.23,respectively.The scatterplot with linear regression analysis showed that the regression coefficient in all samples is 0.99994.The final error accuracy of the BP neural network is-0.003791±0.4221102μm.CONCLUSION:With the help of the BP neural network,the program can calculate the lenticule thickness and residual stromal thickness of SMILE surgery accurately.Combined with corneal parameters and refraction of patients,the program can intelligently and conveniently integrate medical information to identify candidates for SMILE surgery.
文摘The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits unintended dis-tortion of image features or it enhances further processing in various applications andfields.This helps to show better results especially for diagnosing diseases.Of late the early prediction of cancer is necessary to prevent disease-causing pro-blems.This work is proposed to identify lung cancer using lung computed tomo-graphy(CT)scan images.It helps to identify cancer cells’affected areas.In the present work,the original input image from Lung Image Database Consortium(LIDC)typically suffers from noise problems.To overcome this,the Gaborfilter used for image processing is highly enhanced.In the next stage,the Spherical Iterative Refinement Clustering(SIRC)algorithm identifies cancer-suspected areas on the CT scan image.This approach can help radiologists and medical experts recognize cancer diseases and syndromes so that serious progress can be avoided in the early stages.These new methods help to remove unwanted por-tions of the CT image and better utilization the image.The subspace extraction of features approach is beneficial for evaluating lung cancer.This paper introduces a novel approach called Contiguous Cross Propagation Neural Network that tends to locate regions afflicted by lung cancer using CT scan pictures(CCPNN).By using the feature values from the fourth step of the procedure,the proposed CCPNN tends to categorize the lesion in the lung nodular site.The efficiency of the suggested CCPNN approach is evaluated using classification metrics such as recall(%),precision(%),F-measure(percent),and accuracy(%).Finally,the incorrect classification ratios are determined to compare the trained networks’effectiveness,through these parameters of CCPNN,it obtains the outstanding per-formance of 98.06%and it has provided the lowest false ratio of 1.8%.
基金supported by the National Natural Science Foundation of China Grant No.30771858Jiangsu Provincial Natural Science Foundation Grant No.BK2007229Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This study was aimed to explore the associations between the combined effects of several polymorphisms in the PPAR-γ and RXR-α gene and environmental factors with the risk of metabolic syndrome by back-error propaga- tion artificial neural network (BPANN). We established the model based on data gathered from metabolic syndrome patients (n = 1012) and normal controls (n = 1069) by BPANN. Mean impact value (MIV) for each input variable was calculated and the sequence of factors was sorted according to their absolute MIVs. Generalized multifactor dimensionality reduction (GMDR) confirmed a joint effect of PPAR-9" and RXR-a based on the results from BPANN. By BPANN analysis, the sequences according to the importance of metabolic syndrome risk fac- tors were in the order of body mass index (BMI), serum adiponectin, rs4240711, gender, rs4842194, family history of type 2 diabetes, rs2920502, physical activity, alcohol drinking, rs3856806, family history of hypertension, rs1045570, rs6537944, age, rs17817276, family history of hyperlipidemia, smoking, rs1801282 and rs3132291. However, no polymorphism was statistically significant in multiple logistic regression analysis. After controlling for environmental factors, A1, A2, B1 and B2 (rs4240711, rs4842194, rs2920502 and rs3856806) models were the best models (cross-validation consistency 10/10, P = 0.0107) with the GMDR method. In conclusion, the interaction of the PPAR-γ and RXR-α gene could play a role in susceptibility to metabolic syndrome. A more realistic model is obtained by using BPANN to screen out determinants of diseases of multiple etiologies like metabolic syndrome.