Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient n...Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.展开更多
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos...To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.展开更多
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B...In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.展开更多
This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (...This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method.展开更多
Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of...Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data.To predict and analyze the load growth of the industrial park,an improved back-propagation algorithm is employed.Furthermore,the study classifies users within the industrial park according to their specific power consumption and supply requirements.This user segmentation allows for the introduction of three constraints:node voltage,wire current,and capacity of DERs.By incorporating these constraints,the study constructs an optimization model for the distribution network in the industrial park,with the objective of minimizing the total operation and maintenance cost.The primary goal of these optimizations is to address the needs of DERs connected to the distribution network,while simultaneously mitigating their potential adverse impact on the network.Additionally,the study aims to enhance the overall energy efficiency of the industrial park through more efficient utilization of resources.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propag...An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.展开更多
A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performa...A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performance of global convergence. In addition, the numbers of rules and the initial weights and structure of fuzzy neural networks are difficult to determine. Here rough sets are introduced to decide the numbers of rules and original weights. Finally, experiment results show the algorithm may get better effect than the BP algorithm.展开更多
This paper has concluded six features that belong to passenger vehicle types based on genetic algorithm(GA)of feature selection.We have obtained an optimal feature subset,including length,ratio of width and length,and...This paper has concluded six features that belong to passenger vehicle types based on genetic algorithm(GA)of feature selection.We have obtained an optimal feature subset,including length,ratio of width and length,and ratio of height and length.And then we apply this optimal feature subset as well as another feature set,containing length,width and height,to the network input.Back-propagation(BP)neural network and support vector machine(SVM)are applied to classify the passenger vehicle type.There are four passenger vehicle types.This paper selects 400 samples of passenger vehicles,among which 320 samples are used as training set(each class has 80 samples)and the other 80 samples as testing set,taking the feature of the samples as network input and taking four passenger vehicle types as output.For the test,we have applied BP neural network to choose the optimal feature subset as network input,and the results show that the total classification accuracy rate can reach 96%,and the classification accuracy rate of first type can reach 100%.In this condition,we obtain a conclusion that this algorithm is better than the traditional ones[9].展开更多
An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accur...An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.展开更多
This paper offer an artificial neural network (ANN) model to calculate drag force on an axisymmetric underwater vehicle by obtaining dataset from a computational fluid dynamic analysis. First, great effort was done to...This paper offer an artificial neural network (ANN) model to calculate drag force on an axisymmetric underwater vehicle by obtaining dataset from a computational fluid dynamic analysis. First, great effort was done to calculate the pressure and viscous data forces by increasing the precision and numerical data in order to extend and raise quality of dataset. In this step, numerous different geometry models (configurations of axisymmetric body) were designed, examined and evaluated input parameters including: diameter of body, diameter of nose disc, length of body, length of nose and velocity whereas outputs contain pressure and viscous forces. This dataset was used to train the ANN model. Feed-forward neural network (FFNN) is selected which is more common and suitable in this field’s study. A three-layer neural network was opted and after training this network, the results showed good agreement with CFD data. This study shows that applying the ANN model helps to reach final purpose in the least time and error, in addition a variety of tests can be performed to have a desired design in this way.展开更多
Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic...Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series.展开更多
Order statistic filters are used often in the applications of science and engineering problems. This paper investigates the design and training of a feed-forward neural network to approximate minimum, median and maxim...Order statistic filters are used often in the applications of science and engineering problems. This paper investigates the design and training of a feed-forward neural network to approximate minimum, median and maximum operations. The design of order statistic neural network filtering (OSNNF) is further refined by converting the input vectors with elements of real numbers to a set of inputs consisting of ones and zeros, and the neural network is trained to yield a rank vector which can be used to obtain the exact ranked values of the input vector. As a case study, the OSNNF is used to improve the visibility of target echoes masked by clutter in ultrasonic nondestructive testing applications.展开更多
In general, we describe three different methods to select an appropriatedistribution form: histogram, probability plots, and hypothesis test. The life distribution isrecognized by a neural network method. The relation...In general, we describe three different methods to select an appropriatedistribution form: histogram, probability plots, and hypothesis test. The life distribution isrecognized by a neural network method. The relationship among life distribution with life data isdescribed through threshold and weight of neural networks. The method is convenient to use. Anexample is presented to validate this method, and the results are satisfactory.展开更多
The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of ...The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.展开更多
基金This work was supported by National Natural Science Foundation of China(No.60276037).
文摘Objective To correct the nonlinear error of sensor output,a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System(BP FS) is presented.Methods The BP FS is a computationally efficient nonlinear universal approximator,which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed.Results The neuro-fuzzy hybrid system,i.e.BP FS,is then applied to construct nonlinear inverse model of pressure sensor.The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation,and thus the performance of pressure sensor is significantly improved.Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
基金The National Natural Science Foundation of China(No.51465035)the Natural Science Foundation of Gansu,China(No.20JR5R-A466)。
文摘To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.CDJZR14130006)
文摘In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.
文摘This paper presents a comprehensive review of various traditional systems of crude oil distillation column design, modeling, simulation, optimization and control methods. Artificial neural network (ANN), fuzzy logic (FL) and genetic algorithm (GA) framework were chosen as the best methodologies for design, optimization and control of crude oil distillation column. It was discovered that many past researchers used rigorous simulations which led to convergence problems that were time consuming. The use of dynamic mathematical models was also challenging as these models were also time dependent. The proposed methodologies use back-propagation algorithm to replace the convergence problem using error minimal method.
基金supported by the Shanghai Municipal Social Science Foundation(No.2020BGL032).
文摘Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data.To predict and analyze the load growth of the industrial park,an improved back-propagation algorithm is employed.Furthermore,the study classifies users within the industrial park according to their specific power consumption and supply requirements.This user segmentation allows for the introduction of three constraints:node voltage,wire current,and capacity of DERs.By incorporating these constraints,the study constructs an optimization model for the distribution network in the industrial park,with the objective of minimizing the total operation and maintenance cost.The primary goal of these optimizations is to address the needs of DERs connected to the distribution network,while simultaneously mitigating their potential adverse impact on the network.Additionally,the study aims to enhance the overall energy efficiency of the industrial park through more efficient utilization of resources.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.
基金supported by the National Natural Science Foundation of China under Grant No. 40774087
文摘An artificial neural network (ANN) is used to model the middle atmosphere using a large number of TIMED/SABER limb sounding temperature profiles. A three-layer feed-forward network is chosen based on the back-propagation (BP) algorithm. Latitude, longitude, and height are chosen as the input vectors of the network while temperature is the output vector. The temperature observations during the period from 13 January through 16 March 2007, which are in the same satellite yaw, are taken as samples to train an ANN. Results suggest that the network has high quality for modeling spatial variations of temperature. Quantitative comparisons between the ANN outputs and those from the popular empirical NRLMSISE-00 model illustrate their generally consistent features and some specific differences. The NRLMSISE-00 model's zonal mean temperatures are too high by ~6 K-10 K near the stratopause, and the amplitude and phase of the planetary wave number 1 activity are different in some respects from the ANN simulations above 45-50 km, suggesting improvement is needed in the NRLMSISE-00 model for more accurate simulation near and above the stratopause.
文摘A rough set based fuzzy neural network algorithm is proposed to solve the problem of pattern recognition. The least square algorithm (LSA) is used in the learning process of fuzzy neural network to obtain the performance of global convergence. In addition, the numbers of rules and the initial weights and structure of fuzzy neural networks are difficult to determine. Here rough sets are introduced to decide the numbers of rules and original weights. Finally, experiment results show the algorithm may get better effect than the BP algorithm.
基金China Postdoctoral Science Foundation(No.20100481307)Natural Science Foundation of Shanxi(No.2009011018-3)
文摘This paper has concluded six features that belong to passenger vehicle types based on genetic algorithm(GA)of feature selection.We have obtained an optimal feature subset,including length,ratio of width and length,and ratio of height and length.And then we apply this optimal feature subset as well as another feature set,containing length,width and height,to the network input.Back-propagation(BP)neural network and support vector machine(SVM)are applied to classify the passenger vehicle type.There are four passenger vehicle types.This paper selects 400 samples of passenger vehicles,among which 320 samples are used as training set(each class has 80 samples)and the other 80 samples as testing set,taking the feature of the samples as network input and taking four passenger vehicle types as output.For the test,we have applied BP neural network to choose the optimal feature subset as network input,and the results show that the total classification accuracy rate can reach 96%,and the classification accuracy rate of first type can reach 100%.In this condition,we obtain a conclusion that this algorithm is better than the traditional ones[9].
文摘An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.
文摘This paper offer an artificial neural network (ANN) model to calculate drag force on an axisymmetric underwater vehicle by obtaining dataset from a computational fluid dynamic analysis. First, great effort was done to calculate the pressure and viscous data forces by increasing the precision and numerical data in order to extend and raise quality of dataset. In this step, numerous different geometry models (configurations of axisymmetric body) were designed, examined and evaluated input parameters including: diameter of body, diameter of nose disc, length of body, length of nose and velocity whereas outputs contain pressure and viscous forces. This dataset was used to train the ANN model. Feed-forward neural network (FFNN) is selected which is more common and suitable in this field’s study. A three-layer neural network was opted and after training this network, the results showed good agreement with CFD data. This study shows that applying the ANN model helps to reach final purpose in the least time and error, in addition a variety of tests can be performed to have a desired design in this way.
文摘Molding and simulation of time series prediction based on dynamic neural network(NN) are studied. Prediction model for non-linear and time-varying system is proposed based on dynamic Jordan NN. Aiming at the intrinsic defects of back-propagation (BP) algorithm that cannot update network weights incrementally, a hybrid algorithm combining the temporal difference (TD) method with BP algorithm to train Jordan NN is put forward. The proposed method is applied to predict the ash content of clean coal in jigging production real-time and multi-step. A practical example is also given and its application results indicate that the method has better performance than others and also offers a beneficial reference to the prediction of nonlinear time series.
文摘Order statistic filters are used often in the applications of science and engineering problems. This paper investigates the design and training of a feed-forward neural network to approximate minimum, median and maximum operations. The design of order statistic neural network filtering (OSNNF) is further refined by converting the input vectors with elements of real numbers to a set of inputs consisting of ones and zeros, and the neural network is trained to yield a rank vector which can be used to obtain the exact ranked values of the input vector. As a case study, the OSNNF is used to improve the visibility of target echoes masked by clutter in ultrasonic nondestructive testing applications.
文摘In general, we describe three different methods to select an appropriatedistribution form: histogram, probability plots, and hypothesis test. The life distribution isrecognized by a neural network method. The relationship among life distribution with life data isdescribed through threshold and weight of neural networks. The method is convenient to use. Anexample is presented to validate this method, and the results are satisfactory.
文摘The prediction of groundwater level is important for the use and management of groundwater resources. In this paper, the artificial neural networks (ANN) were used to predict groundwater level in the Dawu Aquifer of Zibo in Eastern China. The first step was an auto-correlation analysis of the groundwater level which showed that the monthly groundwater level was time dependent. An auto-regression type ANN (ARANN) model and a regression-auto-regression type ANN (RARANN) model using back-propagation algorithm were then used to predict the groundwater level. Monthly data from June 1988 to May 1998 was used for the network training and testing. The results show that the RARANN model is more reliable than the ARANN model, especially in the testing period, which indicates that the RARANN model can describe the relationship between the groundwater fluctuation and main factors that currently influence the groundwater level. The results suggest that the model is suitable for predicting groundwater level fluctuations in this area for similar conditions in the future.