期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Safety Risk Assessment Analysis of Bridge Construction Using Backpropagation Neural Network
1
作者 Yue Yang 《Journal of Architectural Research and Development》 2024年第2期24-30,共7页
The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks... The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks in assessing safety risks during bridge construction.It introduces the situation,principles,methods,and advantages,as well as the current status and future development directions of backpropagation-related research. 展开更多
关键词 backpropagation neural network Bridge construction Safety risk assessment
下载PDF
Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks 被引量:2
2
作者 何超 徐立新 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期300-305,共6页
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s... Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering. 展开更多
关键词 servo system backlash nonlinear characteristics limit cycle backpropagation neural networks(BPNN) compensation methods
下载PDF
Application of the Backpropagation Neural Network Method in Designing Tungsten Heavy Alloy
3
作者 张朝晖 王玮洁 +1 位作者 王富耻 李树奎 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期478-482,共5页
The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural ne... The model describing the dependence of the mechanical properties on the chemical composition and as deformation techniques of tungsten heavy alloy is established by the method of improved the backpropagation neural network. The mechanical properties' parameters of tungsten alloy and deformation techniques for tungsten alloy are used as the inputs. The chemical composition and deformation amount of tungsten alloy are used as the outputs. Then they are used for training the neural network. At the same time, the optimal number of the hidden neurons is obtained through the experiential equations, and the varied step learning method is adopted to ensure the stability of the training process. According to the requirements for mechanical properties, the chemical composition and the deformation condition for tungsten heavy alloy can be designed by this artificial neural network system. 展开更多
关键词 tungsten heavy alloy material design backpropagation (BP) neural network
下载PDF
Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network
4
作者 Baowei Wang Wen You 《Computers, Materials & Continua》 SCIE EI 2024年第10期1085-1100,共16页
As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ens... As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments,particularly within complex scenarios like virtual assembly,where both high precision and real-time responsiveness are imperative.Despite ongoing developments,current CD techniques often fall short in meeting these stringent requirements,resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems.To address these limitations,this study introduces a novel algorithm that leverages the capabilities of a Backpropagation Neural Network(BPNN)to optimize the structural composition of the Hybrid Bounding Volume Tree(HBVT).Through this optimization,the research proposes a refined Hybrid Hierarchical Bounding Box(HHBB)framework,which is specifically designed to enhance the computational efficiency and precision of CD processes.The HHBB framework strategically reduces the complexity of collision detection computations,thereby enabling more rapid and accurate responses to collision events.Extensive experimental validation within virtual assembly environments reveals that the proposed algorithm markedly improves the performance of CD,particularly in handling complex models.The optimized HBVT architecture not only accelerates the speed of collision detection but also significantly diminishes error rates,presenting a robust and scalable solution for real-time applications in intricate virtual systems.These findings suggest that the proposed approach offers a substantial advancement in CD technology,with broad implications for its application in virtual reality,computer graphics,and related fields. 展开更多
关键词 Collision detection virtual assembly backpropagation neural network real-time interactivity
下载PDF
Predicting buckling of carbon fiber composite cylindrical shells based on backpropagation neural network improved by sparrow search algorithm
5
作者 Wei Guan Yong-mei Zhu +1 位作者 Jun-jie Bao Jian Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第12期2459-2470,共12页
The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner dia... The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and tested.The buckling behavior of CF-CCSs was analyzed by finite element and experiment.Subsequently,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element method.On this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was established.The results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,respectively.The buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites. 展开更多
关键词 Composite cylindrical shell:Carbon fiber backpropagation neural network Sparrow search algorithm BUCKLING
原文传递
A backpropagation neural network improved by a genetic algorithm for predicting the mean radiant temperature around buildings within the long-term period of the near future 被引量:1
6
作者 Yuquan Xie Yasuyuki Ishida +1 位作者 Jialong Hu Akashi Mochida 《Building Simulation》 SCIE EI CSCD 2022年第3期473-492,共20页
This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts bui... This study aimed to develop a neural network(NN)-based method to predict the long-term mean radiant temperature(MRT)around buildings by using meteorological parameters as training data.The MRT dramatically impacts building energy consumption and significantly affects outdoor thermal comfort.In NN-based long-term MRT prediction,two main restrictions must be overcome to achieve precise results:first,the difficulty of preparing numerous training datasets;second,the challenge of developing an accurate NN model.To overcome these restrictions,a combination of principal component analysis(PCA)and K-means clustering was employed to reduce the training data while maintaining high prediction accuracy.Second,three widely used NN models(feedforward NN(FFNN),backpropagation NN(BPNN),and BPNN optimized using a genetic algorithm(GA-BPNN))were compared to identify the NN with the best long-term MRT prediction performance.The performances of the tested NNs were evaluated using the mean absolute percentage error(MAPE),which was≤3%in each case.The findings indicate that the training dataset was reduced effectively by the PCA and K-means.Among the three NNs,the GA-BPNN produced the most accurate results,with its MAPE being below 1%.This study will contribute to the development of fast and feasible outdoor thermal environment prediction. 展开更多
关键词 backpropagation neural network principal component analysis mean radiant temperature K-means clustering genetic algorithm long-term prediction
原文传递
Neural Network for Estimating Daily Global Solar Radiation Using Temperature, Humidity and Pressure as Unique Climatic Input Variables
7
作者 Victor Adrian Jimenez Amelia Barrionuevo +3 位作者 Adrian Will Sebastiá n Rodrí guez 《Smart Grid and Renewable Energy》 2016年第3期94-103,共10页
Solar radiation is one of the most important parameters for applications, development and research related to renewable energy. However, solar radiation measurements are not a simple task for several reasons. In the c... Solar radiation is one of the most important parameters for applications, development and research related to renewable energy. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly on the search for relationships between weather variables, such as temperature, humidity, precipitation, cloudiness, sunshine hours, etc. But, many of these are subjective and difficult to measure, and thus they are not always available. In this paper, we propose a method for estimating daily global solar radiation, combining empirical models and artificial neural networks. The model uses temperature, relative humidity and atmospheric pressure as the only climatic input variables. Also, this method is compared with linear regression to verify that the data have nonlinear components. The models are adjusted and validated using data from five meteorological stations in the province of Tucumán, Argentina. Results show that neural networks have better accuracy than empirical models and linear regression, obtaining on average, an error of 2.83 [MJ/m<sup>2</sup>] in the validation dataset. 展开更多
关键词 Daily Solar Radiation Estimation Empirical Solar Radiation Model Feedforward backpropagation neural network Regression Analysis
下载PDF
Total organic carbon content logging prediction based on machine learning:A brief review 被引量:1
8
作者 Linqi Zhu Xueqing Zhou +1 位作者 Weinan Liu Zheng Kong 《Energy Geoscience》 2023年第2期100-107,共8页
The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of o... The total organic carbon content usually determines the hydrocarbon generation potential of a formation.A higher total organic carbon content often corresponds to a greater possibility of generating large amounts of oil or gas.Hence,accurately calculating the total organic carbon content in a formation is very important.Present research is focused on precisely calculating the total organic carbon content based on machine learning.At present,many machine learning methods,including backpropagation neural networks,support vector regression,random forests,extreme learning machines,and deep learning,are employed to evaluate the total organic carbon content.However,the principles and perspectives of various machine learning algorithms are quite different.This paper reviews the application of various machine learning algorithms to deal with total organic carbon content evaluation problems.Of various machine learning algorithms used for TOC content predication,two algorithms,the backpropagation neural network and support vector regression are the most commonly used,and the backpropagation neural network is sometimes combined with many other algorithms to achieve better results.Additionally,combining multiple algorithms or using deep learning to increase the number of network layers can further improve the total organic carbon content prediction.The prediction by backpropagation neural network may be better than that by support vector regression;nevertheless,using any type of machine learning algorithm improves the total organic carbon content prediction in a given research block.According to some published literature,the determination coefficient(R^(2))can be increased by up to 0.46 after using machine learning.Deep learning algorithms may be the next breakthrough direction that can significantly improve the prediction of the total organic carbon content.Evaluating the total organic carbon content based on machine learning is of great significance. 展开更多
关键词 Total organic carbon content Well logging Machine learning backpropagation neural network Support vector regression
下载PDF
Estimating the Texture of Purple Soils Using Vis-NIR Spectroscopy and Optimized Conversion Models
9
作者 Baina Chen Jie Wei +2 位作者 Qiang Tang Yu Gou Chunhong Liu 《Agricultural Sciences》 CAS 2023年第2期202-218,共17页
Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measureme... Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion. 展开更多
关键词 Soil Texture Vis-NIR Spectra Stepwise Multiple Linear Regression Partial Least Squares Regression backpropagation neural network
下载PDF
User Profile in Smart Elderly Care Community:Findings from Community in Western China
10
作者 Yan Wei Xiaowei Liu Ruilin Hou 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期156-167,共12页
With the increase in the aging population,the need for elderly care services has diversified,and smart elderly care has become an effective measure to cope with this increasing aging population.Based on the data from ... With the increase in the aging population,the need for elderly care services has diversified,and smart elderly care has become an effective measure to cope with this increasing aging population.Based on the data from the platform“Guan Hu Tong”of RQ Company in the community of Shaanxi Province in western China,this study mined the data of smart elderly care services through the recency,frequency and monetary value(RFM)model and the backpropagation(BP)neural network model,constructed the user profile of the elderly,and predicted users’practical demands.The following conclusions were drawn:The oldest users are important target users of smart elderly care service platforms;Elderly women living alone rely more on smart elderly care services;Meal delivery and health follow-up services are the most popular among elderly users. 展开更多
关键词 smart elderly care user profile backpropagation(BP)neural network
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
11
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed neural networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
Evaluation of the use of sublevel open stoping in the mining of moderately dipping medium-thick orebodies 被引量:5
12
作者 Shuai Xu Ruiyu Liang +1 位作者 Fidelis TSuorineni Yuanhui Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期333-346,共14页
The flow of blasted ore during mining of moderately dipping medium-thick orebodies is a challenge.Selecting a suitable mining system for such ore bodies is difficult.This paper proposes a diamond layout sublevel open ... The flow of blasted ore during mining of moderately dipping medium-thick orebodies is a challenge.Selecting a suitable mining system for such ore bodies is difficult.This paper proposes a diamond layout sublevel open stoping system using fan blastholes with backfilling to mine such orebodies.To evaluate the performance of system the relationships between ore recovery and stope footwall dip angle,footwall surface roughness,drawpoint spacing and production blast ring burden were investigated.An ore recovery data set from 81 laboratory physical model experiments was established from combinations of the listed factors.Various modules in a back propagation neural network structure were compared,and an optimal network structure identified.An ore recovery backpropagation neural network(BPNN)forecast model was developed.Using the model and sensitivity analysis of the factors affecting the proposed open stope mining system,the significance of each factor on ore recovery was studied.The study results were applied to a case study at the Shandong Gold Group Jiaojia Gold Mine.The results showed that the application of a BPNN and sensitivity analysis models for ore recovery prediction in the proposed mining system and field experimental results confirm that the suggested mining method is feasible. 展开更多
关键词 Moderately dipping medium-thick orebody Sublevel open stoping Fan blastholes Ore recovery backpropagation neural network
下载PDF
Bias correction of sea surface temperature retrospective forecasts in the South China Sea 被引量:2
13
作者 Guijun Han Jianfeng Zhou +7 位作者 Qi Shao Wei Li Chaoliang Li Xiaobo Wu Lige Cao Haowen Wu Yundong Li Gongfu Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第2期41-50,共10页
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee... Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data. 展开更多
关键词 sea surface temperature retrospective forecasts bias correction backpropagation neural network empirical orthogonal function analysis South China Sea
下载PDF
Predicting roof-surface wind pressure induced by conical vortex using a BP neural network combined with POD 被引量:2
14
作者 Fubin Chen Wen Kang +4 位作者 Zhenru Shu Qiusheng Li Yi Li YFrank Chen Kang Zhou 《Building Simulation》 SCIE EI CSCD 2022年第8期1475-1490,共16页
This study aims to examine the feasibility of predicting surface wind pressure induced by conical vortex using a backpropagation neural network(BPNN)combined with proper orthogonal decomposition(POD),in which a 1:150 ... This study aims to examine the feasibility of predicting surface wind pressure induced by conical vortex using a backpropagation neural network(BPNN)combined with proper orthogonal decomposition(POD),in which a 1:150 scaled model with a large-span retractable roof was tested in wind tunnel under both laminar and turbulent flow conditions.The distributions of mean and fluctuating wind pressure coefficients were first described,and the effects of inflow turbulence,wind direction,roof opening were examined separately.For the prediction of wind pressure,the POD-BPNN model was trained using measurement data from adjacent points.The prediction results are overall satisfactory.The root-mean-square-error(RMSE)between test and predicted data lies mostly within 10%.In particular,the prediction of mean wind pressure is found to be better than that of fluctuating wind pressure.The outcomes in this study highlight that the proposed POD-BPNN model can be well used as a useful tool to predict surface wind pressure. 展开更多
关键词 wind tunnel test-roof-surface wind pressure conical vortex proper orthogonal decomposition(POD) backpropagation neural network(BPNN)
原文传递
Small-current grounding fault location method based on transient main resonance frequency analysis 被引量:2
15
作者 Yongjie Zhang Xiaojun Wang +2 位作者 Junjuan Li Yin Xu Guohong Wu 《Global Energy Interconnection》 2020年第4期324-334,共11页
The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we t... The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we take that the main resonant frequency and its corresponding component is related to the fault distance.Based on this,a fault location method based on double-end wavelet energy ratio at the scale corresponding to the main resonant frequency is proposed.And back propagation neural network(BPNN)is selected to fit the non-linear relationship between the wavelet energy ratio and fault distance.The performance of this proposed method has been verified in different scenarios of a simulation model in PSCAD/EMTDC. 展开更多
关键词 Small-current grounding fault location Main resonant frequency Double-end wavelet energy ratio backpropagation neural network(BPNN)
下载PDF
Monitoring Flue-Cured Tobacco Leaf Chlorophyll Content under Different Light Qualities by Hyperspectral Reflectance 被引量:1
16
作者 Fangfang Jia Shuang Han +3 位作者 Dong Chang Haitao Yan Yueqi Xu Wenna Song 《American Journal of Plant Sciences》 2020年第8期1217-1234,共18页
Rapid assessment of foliar chlorophyll content in tobacco is critical for assessment of growth and precise management to improve quality and yield while minimizing adverse environmental impact. Our objective is to dev... Rapid assessment of foliar chlorophyll content in tobacco is critical for assessment of growth and precise management to improve quality and yield while minimizing adverse environmental impact. Our objective is to develop a precise agricultural practice predicting tobacco-leaf chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> content. Reflectance experiments have been conducted on flue-cured tobacco over 3 consecutive years under different light quality. Leaf hyperspectral reflectance and chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> content data have been collected at 15-day intervals from 30 days after transplant until harvesting. We identified the central band that is sensitive to tobacco-leaf chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> content and the optimum wavelength combinations for establishing new spectral indices (simple ratio index, RVI;normalized difference vegetation index, NDVI;and simple difference vegetation index, DVI). We then established linear and BackPropagation (BP) neural network models to estimate chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> content. The central bands for leaf chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> content are concentrated in the visible range (410 - 680 nm) in combination with the shortwave infrared range (1900 - 2400 nm). The optimum spectral range for the spectral band combinations</span><span style="font-family:Verdana;"> RVI, NDVI, and DVI</span><span style="font-family:Verdana;"> are 440 and 470 nm, 440 and 470 nm, and 440 and 460 nm, respectively. The linear RVI, NDVI, and DVI models, SMLR model and the BP neural network model have respective R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> values of 0.76, 0.77, 0.69, 0.78 and 0.86, and root mean square error values of 0.63, 1.60, 1.59, 2.04 and 0.05 mg chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;">/g (fresh weight), respectively. Our results identified chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> sensitive spectral regions and new indices facilitate a rapid, non-destructive field estimation of leaf chlorophyll-</span><i><span style="font-family:Verdana;">a</span></i><span style="font-family:Verdana;"> content for tobacco. 展开更多
关键词 Chlorophyll-a Light Quality Hyperspectral Reflectance Error backpropagation neural networks Factorial Experimental Design
下载PDF
Quantitative Models for the Structure and Photodegradation of Polycyclic Aromatic Hydrocarbons 被引量:2
17
作者 周作明 李小林 荆国华 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第2期205-212,共8页
Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydro... Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydrocarbons(PAHs) by use of linear method(multiple linear regression,MLR) and non-linear method(back propagation artificial neural network,BP-ANN).A BP-ANN with 3-3-1 architecture was generated by using three quantum chemical descriptors appearing in the MLR model.The standard heat of formation(HOF),the gap of frontier molecular orbital energies(ΔELH) and total energy(TE) were inputs and its output was logK.Leave-One-Out(LOO) Cross-Validated correlation coefficient(R^2CV) of the established MLR and BP-ANN models were 0.6383 and 0.7843,respectively.The nonlinear BP-ANN model has better predictive ability compared to the linear MLR model with the root mean square error(RMSE) for training and validation sets to be 0.1071,0.1514 and the squared correlation coefficient(R^2) of 0.9791,0.9897,respectively.In addition,some insights into the molecular structural features affecting the photodegradation of PAHs were also discussed. 展开更多
关键词 quantitative structure-property relationship(QSPR) photodegradation rate constant(logK) polycyclic aromatic hydrocarbons multiple linear regression backpropagation artificial neural network
下载PDF
TYRE DYNAMICS MODELLING OF VEHICLE BASED ON SUPPORT VECTOR MACHINES 被引量:2
18
作者 ZHENG Shuibo TANG Houjun +1 位作者 HAN Zhengzhi ZHANG Yong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期558-565,共8页
Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented ... Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation (BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMsqyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simuLation. 展开更多
关键词 Support vector machines(SVMs) backpropagation(BP) neural network Tyre model Regression estimation Magic formula
下载PDF
Ground Passive Microwave Remote Sensing of Atmospheric Profiles Using WRF Simulations and Machine Learning Techniques
19
作者 Lulu ZHANG Meijing LIU +4 位作者 Wenying HE Xiangao XIA Haonan YU Shuangxu LI Jing LI 《Journal of Meteorological Research》 SCIE CSCD 2024年第4期680-692,共13页
Microwave radiometer(MWR) demonstrates exceptional efficacy in monitoring the atmospheric temperature and humidity profiles.A typical inversion algorithm for MWR involves the use of radiosonde measurements as the trai... Microwave radiometer(MWR) demonstrates exceptional efficacy in monitoring the atmospheric temperature and humidity profiles.A typical inversion algorithm for MWR involves the use of radiosonde measurements as the training dataset.However,this is challenging due to limitations in the temporal and spatial resolution of available sounding data,which often results in a lack of coincident data with MWR deployment locations.Our study proposes an alternative approach to overcome these limitations by harnessing the Weather Research and Forecasting(WRF) model's renowned simulation capabilities,which offer high temporal and spatial resolution.By using WRF simulations that collocate with the MWR deployment location as a substitute for radiosonde measurements or reanalysis data,our study effectively mitigates the limitations associated with mismatching of MWR measurements and the sites,which enables reliable MWR retrieval in diverse geographical settings.Different machine learning(ML) algorithms including extreme gradient boosting(XGBoost),random forest(RF),light gradient boosting machine(LightGBM),extra trees(ET),and backpropagation neural network(BPNN) are tested by using WRF simulations,among which BPNN appears as the most superior,achieving an accuracy with a root-mean-square error(RMSE) of 2.05 K for temperature,0.67 g m~(-3) for water vapor density(WVD),and 13.98% for relative humidity(RH).Comparisons of temperature,RH,and WVD retrievals between our algorithm and the sounding-trained(RAD) algorithm indicate that our algorithm remarkably outperforms the latter.This study verifies the feasibility of utilizing WRF simulations for developing MWR inversion algorithms,thus opening up new possibilities for MWR deployment and airborne observations in global locations. 展开更多
关键词 microwave radiometer(MWR) Weather Research and Forecasting(WRF)model extreme gradient boosting(XGBoost) random forest(RF) light gradient boosting machine(LightGBM) extra trees(ET) backpropagation neural network(BPNN) monochromatic radiative transfer model(MonoRTM)
原文传递
Output Prediction of Helical Microfiber Temperature Sensors in Cycling Measurement by Deep Learning
20
作者 Minghui CHEN Jinjin HAN +7 位作者 Juan LIU Fangzhu ZHENG Shihang GENG Shimeng TANG Zhijun WU Jixiong PU Xining ZHANG Hao DAI 《Photonic Sensors》 SCIE EI CSCD 2023年第3期37-49,共13页
The inconsistent response curve of delicate micro/nanofiber(MNF)sensors during cycling measurement is one of the main factors which greatly limit their practical application.In this paper,we proposed a temperature sen... The inconsistent response curve of delicate micro/nanofiber(MNF)sensors during cycling measurement is one of the main factors which greatly limit their practical application.In this paper,we proposed a temperature sensor based on the copper rod-supported helical microfiber(HMF).The HMF sensors exhibited different light intensity-temperature response relationships in single-cycle measurements.Two neural networks,the deep belief network(DBN)and the backpropagation neural network(BPNN),were employed respectively to predict the temperature of the HMF sensor in different sensing processes.The input variables of the network were the sensor geometric parameters(the microfiber diameter,wrapped length,coiled turns,and helical angle)and the output optical intensity under different working processes.The root mean square error(RMSE)and Pearson correlation coefficient(R)were used to evaluate the predictive ability of the networks.The DBN with two restricted Boltzmann machines(RBMs)provided the best temperature prediction results(RMSE and R of the heating process are 0.9705℃and 0.9969,while the values of RMSE and R of the cooling process are 0.7866℃and 0.9977,respectively).The prediction results obtained by the optimal BPNN(five hidden layers,10 neurons in each layer,RMSE=1.1266℃,R=0.9957)were slightly inferior to those obtained by the DBN.The neural network could accurately and reliably predict the response of the HMF sensor in cycling operation,which provided the possibility for the flexible application of the complex MNF sensor in a wide sensing range. 展开更多
关键词 Helical microfiber temperature sensors deep belief network backpropagation neural network response prediction cycling measurement
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部