期刊文献+
共找到748篇文章
< 1 2 38 >
每页显示 20 50 100
In vitro and in silico studies of salicylic acid on systemic induced resistance against bacterial leaf blight disease and enhancement of crop yield
1
作者 Wannaporn THEPBANDIT Narendra Kumar PAPATHOTI +4 位作者 Jayasimha Rayulu DADDAM Nguyen Huy HOANG Toan LE THANH Chanon SAENGCHAN Kumrai BUENSANTEAI 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第1期170-184,共15页
Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant ... Salicylic acid(SA)is an effective elicitor to promote plant defenses and growth.This study aimed to investigate rice(Oryza sativa L.)cv.Khao Dawk Mali 105 treated with salicylic acid(SA)-Ricemate as an enhanced plant protection mechanism against bacterial leaf blight(BLB)disease caused by Xanthomonas oryzae pv.oryzae(Xoo).Results indicated that the use of SA-Ricemate as a foliar spray at concentrations of more than 100 mg L^(-1)can reduce the severity of BLB disease by 71%.SA-Ricemate treatment also increased the hydrogen peroxide(H_(2)O_(2))content of rice leaf tissues over untreated samples by 39–61%.Malondialdehyde(MDA)in rice leaves treated with SA-Ricemate also showed an increase of 50–65%when comparing to non-treated samples.The differential development of these defense compounds was faster and distinct when the SA-Ricemate-treated rice was infected with Xoo,indicating plant-induced resistance.Besides,SA-Ricemate elicitor at a concentration of 50–250 mg L^(-1)was correlated with a substantial increase in the accumulation of total chlorophyll content at 2.53–2.73 mg g^(-1)of fresh weight which suggests that plant growth is activated by SA-Ricemate.The catalase-and aldehyde dehydrogenase-binding sites were searched for using the CASTp server,and the findings were compared to the template.Chemsketch was used to design and optimize SA,which was then docked to the catalase and aldehyde dehydrogenase-binding domains of the enzymes using the GOLD 3.0.1 Software.SA is shown in several docked conformations with the enzymes catalase and aldehyde dehydrogenase.All three catalase amino acids(GLN7,VAL27,and GLU38)were discovered to be involved in the creation of a strong hydrogen bond with SA when SA was present.In this mechanism,the aldehyde dehydrogenase amino acids LYS5,HIS6,and ASP2 were all implicated,and these amino acids created strong hydrogen bonds with SA.In field conditions,SA-Ricemate significantly reduced disease severity by 78%and the total grain yield was significantly increased which was an increase of plant height,tiller per hill,and panicle in three field trials during Aug–Nov 2017 and 2018.Therefore,SA-Ricemate can be used as an alternative elicitor on replacing harmful pesticides to control BLB disease with a high potential of increasing rice defenses,growth,and yield components. 展开更多
关键词 bacterial leaf blight crop yield in vitro in silico rice defense salicylic acid
下载PDF
Molecular Screening of Rice Cultivated in Benin for the Identification of Xanthomonas oryzae Pv. oryzae and Bacterial Leaf Blight Resistance Genes
2
作者 Chimène Nadège Mahoussi Nanoukon Koffi David Montcho Hambada +8 位作者 Antoine Abel Missihoun Kéllya Laurinzo Déguénon Bignon Meyrix Pamela Franzel Loumédjinon Bana Wêtè Déré Félicité Bio Emilienne Zinsou Réel Gael Fael Houngbélagnon Amed Sèmèvo Havivi Lamine Baba-Moussa Lambert Gustave Djédatin 《Advances in Bioscience and Biotechnology》 2023年第12期514-533,共20页
One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no ... One of the most devastating diseases of rice worldwide is bacterial blight (BLB) caused by Xanthomonas oryzae pv. Oryzae (Xoo). In Benin, Xoo was first described in 2013 on wild rice Oryzae longistaminata. So far, no study has been done on Beninese Xoo strains. We do not know whether the pathogen has already passed into the rice varieties grown, or if they are exposed to other bacteria. Whereas the use of resistant varieties, carrying resistance genes, is the only highly effective and environmentally friendly way to control this disease, no information is available on these Xoo resistance genes in rice varieties grown in Benin apart from the one we recently. This study aims to identify Beninese Xoo strains, causing BLB and screen rice varieties grown in Benin for the main resistance genes. Diseased rice leaves showing typical symptoms of fire blight collected from different rice fields in the three phytogeographic areas of Benin were analyzed by PCR for Xoo-specific sequence identification. Furthermore, seventy-five collected rice accessions were screened to identify xa5, Xa7, xa13, and Xa21 resistance genes to Xoo. The results reveal that Xanthomonas oryzae was identified in two fields in Banikouara and one in Malanville. On the other hand, Sphingomonas sp. has been identified in several other rice fields in Benin. Forty-seven of seventy-five rice accessions examined (62.66%) carried Xoo resistance genes with 3 (4%) and 40 (53.33%) of xa5 and Xa21 respectively. None of the accessions had either Xa7 or xa13 resistance genes. Three accessions possess both xa5 and Xa21 genes. Isogenic lines IRBB60 and IRBB21, supposed to be a positive control, presented a Xoo sensitivity allele. These results indicate that Xoo has moved from the wild rice variety to the cultivated variety in northern Benin and varietal improvement programs must be implemented with varieties having several resistance genes for the efficient response against a possible BLB pandemic in Benin. 展开更多
关键词 bacterial blight Xanthomonas oryzae Pv. oryzae Molecular Characterization Resistance Genes
下载PDF
Codominance Functional Marker of Bacterial Blight Resistance Gene Xa7 in Rice
3
作者 Jian PENG Jun LIU +6 位作者 Jianghui YU Youlun XIAO Lin JIA Xiaomei TANG Xiaoping ZHOU Cheng YU Jia LIU 《Agricultural Biotechnology》 CAS 2023年第5期1-8,97,共9页
[Objectives]A codominance functional marker of the broad-spectrum bacterial blight resistance gene,Xa7,of rice was identified for accurate detection,generation tracking,and differentiation between homozygous and hemiz... [Objectives]A codominance functional marker of the broad-spectrum bacterial blight resistance gene,Xa7,of rice was identified for accurate detection,generation tracking,and differentiation between homozygous and hemizygous genotypes of the gene.[Methods]A potential functional marker containing four primers was designed using Premier 5 software and based on the differences on the sequences of Xa7,xa7,and allele-free genomes.The molecular distinctness of the marker in different materials was verified by PCR.Three crossbreed lines of Xa7 and their parents were inoculated with seven bacterial blight strains at the booting stage to examine the affected agronomic traits at maturation.[Results]The homozygous R084 of Xa7 could be amplified into a 91 bp band and the Nip free of allele with a 153 bp band,while the heterozygote Nip/R084,91 bp and 153 bp bands.The candidate codominance marker,Xa7fun,amplified fragments that matched the predicted target bands.No 91 bp fragment was amplified from 18 germplasms of varied types,indicating a lack of Xa7 in them.Whereas Ry1,Ry2 and Ry3 had a 91 bp band,suggesting the inclusion of homozygous Xa7.Under an elevated temperature,Huazhan responded to the seven bacterial blight pathogens as highly susceptible(HS),intermediate susceptible(MS),or susceptible(S);R084 to six of the seven pathogens(HNA1-4,FuJ,GDA2,GD1358,PX086,and YN24)as highly resistant(HR),intermediate resistant(MR)or resistant(R);Ry-1 to five pathogens(GDA2,HNA1-4,FuJ,GD1358,and YN24)as HR or MR;Ry-2 to five pathogens(GDA2,GD1358,HNA1-4,PXO86,and YN24)as HR or R;and Ry-3 to 6 pathogens(HNA1-4,FuJ,GDA2,GD1358,PXO86,and YN24)as HR or MR.Therefore,the infiltration of Xa7 in the improved crossbred lines RY-1,RY-2,and RY-3 significantly accentuated the blight resistance of Huazhan.[Conclusions]Homozygous or hemizygous Xa7 could be accurately differentiated by the currently identified codominance functional marker Xa7 fun.The Xa7 introgression did not significantly alter the critical agronomic traits in the hybridization from generation to generation and could be safely applied in breeding rice varieties with bacterial blight resistance. 展开更多
关键词 RICE bacterial blight Xa7 gene Molecular maker RESISTANCE
下载PDF
OsWRKY65 enhances immunity against fungal and bacterial pathogens in rice
4
作者 Seungmin Son Giha Song +4 位作者 Suhyeon Nam Jinjeong Lee Duk-Ju Hwang Eun-Jung Suh Sang Ryeol Park 《The Crop Journal》 SCIE CSCD 2024年第2期470-481,共12页
Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.The... Diverse bacterial and fungal pathogens attack plants,causing biotic stress and severe yield losses globally.These losses are expected to become more serious as climate change improves conditions for many pathogens.Therefore,identifying genes conferring broad-spectrum disease resistance and elucidating their underlying mechanisms provides important resources for plant breeding.WRKY transcription factors affect plant growth and stress responses.However,the functions of many WRKY proteins remain to be elucidated.Here,we demonstrated the role of rice(Oryza sativa)WRKY groupⅢtranscription factor OsWRKY65 in immunity.OsWRKY65 localized to the nucleus and acted as transcriptional repressor.Genetic and molecular functional analyses showed that OsWRKY65 increases resistance to the fungal pathogen Fusarium fujikuroi through downregulation of GA signaling and upregulation of JA signaling.Moreover,OsWRKY65 modulated the expression of the key genes that confer susceptibility or resistance to Xanthomonas oryzae pv.oryzae to enhance immunity against the pathogen.In particular,OsWRKY65directly bound to the promoter region of OsSWEET13 and repressed its expression.Taken together,our findings demonstrate that the OsWRKY65 enhances resistance to fungal and bacterial pathogens in rice. 展开更多
关键词 bacterial blight Bakanae disease Broad-spectrum disease resistance Oriza sativa OsWRKY65 RICE
下载PDF
Rhizosphere Bacteria for Biocontrol of Bacterial Blight and Growth Promotion of Rice 被引量:9
5
作者 Palaniyandi VELUSAMY J.EBENEZAR IMMANUEL Samuel S.GNANAMANICKAM 《Rice science》 SCIE 2013年第5期356-362,共7页
Several bacterial strains were isolated from different rhizospheres. Among these, strain PDY7 exhibited strong antibacterial activity against the rice bacterial blight (BB) pathogen Xanthomonas oryzae pv. oryzae (... Several bacterial strains were isolated from different rhizospheres. Among these, strain PDY7 exhibited strong antibacterial activity against the rice bacterial blight (BB) pathogen Xanthomonas oryzae pv. oryzae (Xoo) by the laboratory dual plate assays. The antibacterial property of the strain PDY7 was further investigated for the production of 2,4-diacetylphloroglucinol (DAPG), which amplified a characteristic of 629-bp DNA fragment by PCR-based screening method using phlD primers. The application of phlD positive strains was carefully evaluated for disease control and growth promotion of rice plants under field conditions. The selected strain PDY7 suppressed the rice BB by 58.83% and 51.88% under glass house and field conditions, respectively. In addition, the strain PDY7 showed significant two-fold increase in root length (18.08 cm), shoot length (29.81 cm), and grain yield (96.07 g). Strain PDY7 promoted the growth of rice plants by production of indole-3-acetic acid (IAA), which was determined by high performance liquid chromatography (HPLC) analysis. Our findings suggest that PDY7 belongs to the P. fluorescens group and can serve as potential biocontrol of BB as well as biofertilizer agent for growth promotion of rice. 展开更多
关键词 Pseudomonas fluorescens bacterial blight BIOCONTROL antibacterial activity plant growth- promoting rhizobacterium
下载PDF
Pyramiding blast,bacterial blight and brown planthopper resistance genes in rice restorer lines 被引量:5
6
作者 JI Zhi-juan Yang Shu-dong +3 位作者 ZENG Yu-xiang LIANG Yan YANG Chang-deng QIAN Qian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第7期1432-1440,共9页
Rice blast, bacterial blight (BB) and brown planthopper (BPH) are the three main pests of rice. This study investigated pyr-amiding genes resistant to blast, BB and BPH to develop restorer lines. Ten new lines wit... Rice blast, bacterial blight (BB) and brown planthopper (BPH) are the three main pests of rice. This study investigated pyr-amiding genes resistant to blast, BB and BPH to develop restorer lines. Ten new lines with blast, BB and/or BPH resistance genes were developed using marker-assisted selection (MAS) technique and agronomic trait selection (ATS) method. Only HR13 with resistance genes to blast, BB and BPH was obtained. In addition to blast and BB resistance, four lines (HR39, HR41, HR42, HR43) demonstrated moderate resistance to BPH, but MAS for BPH resistance genes were not conducted in developing these four lines. These data suggested that there were unknown elite BPH resistance genes in the Zhongzu 14 donor parent. A more effective defense was demonstrated in the lines withPi1 andPi2 genes although the weather in 2012 was favorable to disease incidence. Blast resistance of the lines with a single resistance gene,Pita, was easily inlfuenced by the weather. Overal, the information obtained through pyramiding multiple resistance genes on developing the restorer lines is helpful for rice resistance breeding. 展开更多
关键词 RICE BLAST bacterial blight brown planthopper resistance PYRAMID
下载PDF
Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight 被引量:7
7
作者 WANG Wei Wu Chao +6 位作者 LIU Mei LIU Xu-ri Hu Guo-cheng SI Hua-min SUN Zong-xiu LIU Wen-zhen Fu Ya-ping 《Rice science》 SCIE 2011年第1期10-16,共7页
Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aic... Antimicrobial peptide is a polypeptide with antimicrobial activity. Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L. subsp, japonica cv. Aichi ashahi by Agrobacterium mediated transformation system. PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in To generation, respectively. RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation, and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants. Four Np3 and Np5 transgenic lines in T1 generation were inoculated with Xanthomonas oryzae pv. oryzae strain CR4, and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4. The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2, Zhe 173 and OS-225. It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight. 展开更多
关键词 antimicrobial peptide gene bacterial blight RESISTANCE transgenic rice
下载PDF
Hybrid Rice Resistant to Bacterial Leaf Blight Developed By Marker Assisted Selection 被引量:3
8
作者 CAO Li-yong, ZHUANG Jie-yun, YUAN Shou-jiang, ZHAN Xiao-deng, ZHENG Kang-le, CHENG Shi-hua (National Center for Rice Improvement State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006) 《Rice science》 SCIE 2003年第1期68-70,共3页
Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were ... Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were selected. By crossing the two lines to CMS line Zhong 9A, two new hybrid rice combinations, Zhongyou 6 and Zhongyou 1176 were developed. The hybrids showed high resistance to diseases, good grain quality and high yielding potential in national and provincial adaptability and yield trials. 展开更多
关键词 marker-assisted selection hybrid rice bacterial leaf blight disease resistance
下载PDF
Marker-Assisted Pyramiding of Genes Conferring ResistanceAgainst Bacterial Blight and Blast Diseases into Indian RiceVariety MTU1010 被引量:2
9
作者 k.arunakumari c.v.durgarani +10 位作者 v.satturu k.r.sarikonda p.d.r.chittoor b.vutukuri g.s.laha a.p.k.nelli s.gattu m.jamal a.prasadbabu s.hajira r.m.sundaram 《Rice science》 SCIE CSCD 2016年第6期306-316,共11页
Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Impro... Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessingPi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generationwherein PCR based functional markers specific for the resistance genes were used for foregroundselection and a set of parental polymorphic microsatellite markers were used for background selectionat each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveriesof MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants,which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB andblast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54)with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants wereselfed to generate ICF3, which were then screened for blast resistance, and all were observed to behighly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB andblast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced forfurther selection and evaluation. 展开更多
关键词 gene pyramiding bacterial blight resistance blast resistance RICE marker-assistedbackcross breeding
下载PDF
Genetics and Improvement of Bacterial Blight Resistance of Hybrid Rice in China 被引量:2
10
作者 ZHANG Qi 《Rice science》 SCIE 2009年第2期83-92,共10页
Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' fo... Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' for 20 years in China, yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances, scientists inevitably raised several questions: what causes the resurgence and what should we do next? And/or is resistance breeding still one of the main objectives in rice improvement? Which approach do we take on resistance breeding so that the resistance will be more durable, and the resistance gene will be used more efficiently? A combined strategy involving traditional method, molecular marker-assisted selection, and transgenic technology should bring a new era to the bacterial blight resistance hybrid rice breeding program. This review also briefly discusses and deliberates on issues related to the broadening of bacterial blight resistance, and suitable utilization of resistance genes, alternate planting of available resistance genes; and understands the virulent populations of the bacterial pathogen in China even in Asia. 展开更多
关键词 hybrid rice bacterial blight Xanthomonas oryzae pv. oryzae resistance breeding GENETICS resistance gene
下载PDF
Improving the resistance of the rice PTGMS line Feng39S by pyramiding blast,bacterial blight,and brown planthopper resistance genes 被引量:3
11
作者 Dabing Yang Lizhong Xiong +1 位作者 Tongmin Mou Jiaming Mi 《The Crop Journal》 SCIE CSCD 2022年第4期1187-1197,共11页
Knowledge of rice(Oryza sativa L.)genes and various DNA markers can be used in genomic breeding programs aimed at developing improved elite rice cultivars.We used an efficient genomic breeding approach to pyramid four... Knowledge of rice(Oryza sativa L.)genes and various DNA markers can be used in genomic breeding programs aimed at developing improved elite rice cultivars.We used an efficient genomic breeding approach to pyramid four resistance genes(Pi2,Xa23,Bph14,and Bph15)in the popular photoperiod-and thermosensitive genic male sterile(PTGMS)rice line Feng39S.We performed foreground selection for the target genes,followed by recombinant selection and background selection.This process reduced the sizes of the genomic segments harboring the target genes(566.8 kb for Pi2,1143.9 kb for Xa23,774.7 kb for Bph14,and 1574.9 kb for Bph15)and accelerated the recovery of the recurrent parent genome to proportions ranging from 98.77%to 99.16%,thus resulting in four near-isogenic lines.To assemble the four resistance genes in Feng39S,we performed a double-way cross combined with foreground and background selection to generate two improved lines of Feng39S(Pi2+Xa23+Bph14+Bph15)with a recurrent parent genome recovery of 98.98%.The two lines showed agronomic performance,grain quality,and fertility–sterility transition characteristics similar to those of the original Feng39S line.The newly developed PTGMS lines and corresponding hybrid combinations were resistant to various field blast isolates and seven representative isolates of bacterial blight.At the seedling stage,the lines also showed resistance against brown planthopper.This study provides an efficient and accurate genomic breeding approach for introducing desirable traits into PTGMS lines. 展开更多
关键词 bacterial blight resistance Blast resistance Brown planthopper resistance Genomic breeding PTGMS line Two-line hybrid rice
下载PDF
Genetic Improvement of Rice for Bacterial Blight Resistance:Present Status and Future Prospects 被引量:2
12
作者 R.ABDUL FIYAZ D.SHIVANI +6 位作者 K.CHAITHANYA K.MOUNIKA M.CHIRANJEEVI G.S.LAHA B.C.VIRAKTAMATH L.V.SUBBA RAO R.M.SUNDARAM 《Rice science》 SCIE CSCD 2022年第2期118-132,共15页
The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which redu... The production and productivity of rice has been challenged due to biotic and abiotic factors.Bacterial blight(BB)disease,caused by Xanthomonas oryzae pv.oryzae,is one of the important biotic stress factors,which reduces rice production by 20%-50%.The deployment of host plant resistance is the most preferred strategy for management of BB disease,and breeding disease resistant varieties remains a very economical and effective option.However,it is difficult to develop rice varieties with durable broad-spectrum resistance against BB using conventional approaches alone.Modern biotechnological tools,particularly the deployment of molecular markers,have facilitated the cloning,characterization and introgression of BB resistance genes into elite varieties.At least 46 BB resistance genes have been identified and mapped from diverse sources till date.Among these,11 genes have been cloned and characterized.Marker-assisted breeding remains the most efficient approach to improve BB resistance by introducing two or more resistance genes into target varieties.Among the identified genes,xa5,xa13 and Xa21 are being widely used in marker-assisted breeding and more than 70 rice varieties or hybrid rice parental lines have been improved for their BB resistance alone or in combination with genes/QTLs conferring tolerance to other stress.We review the developments related to identification and utilization of various resistance genes to develop BB resistant rice varieties through marker-assisted breeding. 展开更多
关键词 RICE bacterial blight resistance gene marker-assisted breeding gene pyramiding
下载PDF
Breeding Rice Restorer Lines with High Resistance to Bacterial Blight by Using Molecular Marker-Assisted Selection 被引量:1
13
作者 DENG Qi-ming WANG Shi-quan +2 位作者 ZHENG Ai-ping ZHANG Hong-yu LI Ping 《Rice science》 SCIE 2006年第1期22-28,共7页
Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assist... Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207. 展开更多
关键词 bacterial blight RESISTANCE gene pyramiding hybrid rice restorer line molecular marker-assisted selection BREEDING
下载PDF
Transgenic Rice Plants Harboring Genomic DNA from Zizania latifolia Confer Bacterial Blight Resistance 被引量:1
14
作者 SHEN Wei-wei SONG Cheng-li +3 位作者 CHEN Jie FuYaping WU Jian-li JIANG Shao-mei 《Rice science》 SCIE 2011年第1期17-22,共6页
Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.), a pair of specific PCR primers FZ14P1/FZ14P2was designed to isolate candidate disease resistance gene. The pooled-PCR ... Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.), a pair of specific PCR primers FZ14P1/FZ14P2was designed to isolate candidate disease resistance gene. The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC) library derived from Z. latifolia. A positive TAC clone (ZR1) was obtained and confirmed by sequence analysis. The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase la), kinase 2, kinase 3a and GLPL (Gly-Leu-Pro-Leu), suggesting that it could be a portion of NBS-LRR type of resistance gene. Using Agrobacterium-mediated transformation of Nipponbare mature embryo, a total of 48 independent transgenic To plants were obtained. Among them, 36 plants were highly resistant to the virulent bacterial blight strain PXO71. The results indicate that ZR1 contains at least one functional bacterial blight resistance gene. 展开更多
关键词 Zizania latifolia transformation-competent artificial chromosome library resistance-gene analog Oryza sativa bacterial blight resistance gene transfer
下载PDF
QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China 被引量:1
15
作者 Jifeng Zhu Jing Wu +3 位作者 Lanfen Wang Matthew W.Blair Zhendong Zhu Shumin Wang 《The Crop Journal》 SCIE CAS CSCD 2016年第5期344-352,共9页
Common bacterial blight(CBB), caused by Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans(Xff), is a worldwide disease of common bean(Phaseolus vulgaris L.).Longyundou 5, a Chinese cultivar in... Common bacterial blight(CBB), caused by Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans(Xff), is a worldwide disease of common bean(Phaseolus vulgaris L.).Longyundou 5, a Chinese cultivar in the Mesoamerican gene pool of common bean, displays resistance to the Xff strain XSC3-1. To identify the genetic mechanisms behind this resistance,we crossed Long 5 with a susceptible genotype to develop a mapping population of F2 plants.Plant resistance to CBB was identified at 14 and 21 days after inoculation with Xff strain XSC3-1.A major QTL at 14 and 21 days after inoculation was mapped on chromosome Pv10 with LOD scores of 6.41 and 5.35, respectively. This locus was associated with SAP6, a previouslyidentified and much-used dominant marker, but in a 4.2 cM interval between new codominant markers BMp10s174 and BMp10s244. Ten candidate genes were found between markers BMp10s174 and BMp10s244 on chromosome Pv10 and could encode defense response proteins responding to CBB pathogens. Four pairs each of epistatic QTL for CBB resistance were detected at 14 and 21 days after inoculation. Phenotypic variation explained by the epistatic QTL ranged from 7.19% to 12.15% and 7.72% to 8.80% at 14 and 21 days after inoculation, respectively. These results confirmed the importance of epistasis in CBB resistance in common bean. The adjacent markers found may be more efficient for marker assisted selection in common bean breeding for CBB resistance owing to their closer linkage to the target QTL. 展开更多
关键词 Common bean(Phaseoius vulgaris L.) Common bacterial blight Quantitative trait locus Days after inoculation
下载PDF
Molecular-based Integrated Identification of Bacterial Blight(Xanthomonas axonopodis pv. dieffenbachiae) in Anthurium and Detection of Latent Infection 被引量:1
16
作者 Niu Junhai Gao Yuerong +4 位作者 Leng Qingyun Yang Guangsui Lin Xinge Zhang Zhiqun Yin Junmei 《Plant Diseases and Pests》 CAS 2014年第5期25-29,共5页
Bacterial blight, caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad), is the most destructive disease of anthurium worldwide, and no effective control technique has been developed currently. The comprehensive... Bacterial blight, caused by Xanthomonas axonopodis pv. dieffenbachiae (Xad), is the most destructive disease of anthurium worldwide, and no effective control technique has been developed currently. The comprehensive survey and precise detection of the pathogen is essential for evaluating disease progress and strengthening management to avoid a serious epidemic. In this study, a total of 253 blight-suspected samples of anthurum and other Araceae species were collected across the country, and 166 potential pathogenic bacteria strains were isolated and purified, after combined analysis on the characteristics of morphology, pathoge- nicity, 16S rDNA sequences and amplicans of Xad-specific SCAR markers. Finally, 93 of which were considered as X. axonopod/s pv. dieffenbachiae. In addition, by using a nested-PCR in repeated detections, 17 out of 21 prevalent anthurium cultivars without blight symptom exhibited latent infection even in young leaves. The results indicated that the anthurium bacterial blight distributed commonly in growing areas in China, and most of the commercial cuhivars had no strong resistance. The identification of Xad infection (latent) would be beneficial for the disease forecasting and management improving in anthttrium production. 展开更多
关键词 ANTHURIUM bacterial blight Xanthomonas axonopodis pv. dieffenbachiae Molecular identification
下载PDF
Production of bacterial blight resistant lines from somatic hybridization between Oryza sativa L. and Oryza meyeriana L. 被引量:15
17
作者 严成其 钱凯先 +5 位作者 薛刚平 吴忠长 陈跃磊 颜秋生 张雪琴 吴平 《Journal of Zhejiang University Science》 CSCD 2004年第10期1199-1205,共7页
Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor... Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained. Seven somatically hybridized plants and their parents were used for AFLP (amplified fragment length polymorphism) analysis using 8 primer pairs. Results confirmed that these plants were somatic hybrids containing the characteristic bands of both parents. The morphology of the regenerated rice showed characters of both O.sativa and O.meyeriana. Two somatic hybrids showed highest BB resistance and the other 8 plants showed moderate resistance. The new germplasms with highest resistance have been used in the rice breeding program for the improvement of bacterial blight resistance. 展开更多
关键词 细菌枯萎病 抵抗力 基因 体细胞杂交 水稻 野稻
下载PDF
Application of Functional Markers to Identify Genes for Bacterial Blight Resistance in Oryza rufipogon 被引量:2
18
作者 XIA Zhi-hui HAN Fei +4 位作者 GAO Li-fen YUAN Qian-hua ZHAI Wen-xue LIU Di LUO Yue-hua 《Rice science》 SCIE 2010年第1期73-76,共4页
Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) fro... Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) from the Philippines. IR24 was highly susceptible to all the strains, and six common wild rice accessions resisted all the nine strains, with a resistance frequency of 67%. The accessions Yulin and Wanning were only susceptible to PXO280 and PXO71, respectively. The accession Gaozhou was susceptible to the three strains PXO79, PXO99 and PXO339, whereas resistant to the other six strains. It could be concluded that there is at least one resistance gene in each common wild rice accession. The functional markers of the genes xa5, xa13, Xa21 and Xa27 were used to detect the presence of these resistance genes in the nine tested wild rice accessions, and it was found that four wild rice accessions contained heterozygous xa13. Among the nine common wild rice accessions, five were homozygous for Xa27 and three homozygous for xa27, and the accession Laibin contained neither xa27 nor Xa27. In addition, there were no xa5 and Xa21 in all of these accessions. 展开更多
关键词 Oryza rufipogon bacterial blight resistance gene functional marker
下载PDF
Research Status and Prospect of Burkholderia glumae, the Pathogen Causing Bacterial Panicle Blight 被引量:3
19
作者 CUI Zhou-qi ZHU Bo +2 位作者 XIE Guan-lin LI Bin HUANG Shi-wen 《Rice science》 SCIE CSCD 2016年第3期111-118,共8页
Bacterial panicle blight caused by Burkholderia glumae is one of the most severe seed-borne bacterial diseases of rice in the world. Currently, this disease has affected many countries of Asia, Africa, South and North... Bacterial panicle blight caused by Burkholderia glumae is one of the most severe seed-borne bacterial diseases of rice in the world. Currently, this disease has affected many countries of Asia, Africa, South and North America. It is a typical example of the shifting from minor plant disease to major disease due to the changes of environmental conditions. Some virulent factors of B. glumae have been identified, including toxoflavins and lipases, whose productions are dependent on the Tof I/Tof R quorum-sensing system, and type III effectors. In spite of its economic significance, neither effective control measure for this disease nor resistant rice variety is currently available. In recent years, genomics, transcriptomics and other molecular methods have provided useful information for better understanding the molecular mechanisms underlying B. glumae virulence and the rice defence mechanisms against pathogens. For the prevention of this pathogen, our laboratory has developed a rapid and sensitive multiplex PCR assay for detecting and distinguishing B. glumae from other Burkholderia species. This improved understanding of B. glumae will shed new light on bacterial panicle blight disease management. 展开更多
关键词 bacterialpanicleblight Burkholderiaglumae PATHOGENESIS GENOMICS TRANSCRIPTOMICS rice
下载PDF
Marker-Assisted Selection of Xa21 Conferring Resistance to Bacterial Leaf Blight in indica Rice Cultivar LT2
20
作者 Hue Thi NGUYEN Quang Hong VU +9 位作者 Tan Van MAI Thu Thi NGUYEN Lam Duc VU Tung Thanh NGUYEN Long Viet NGUYEN Hien Thu Thi VU Hue Thi NONG Trung Nguyen DINH Nakano TOSHITSUGU Liet Van VU 《Rice science》 SCIE CSCD 2018年第1期52-56,共5页
Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent.IRBB21, wh... Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent.IRBB21, which carries the Xa21 gene, was used as the donor parent. The resistance gene Xa21 was introduced into LT2 by marker-assisted backcrossing. Three Xoo races were used to inoculate the improved lines following the clipping method. Eleven BC_3F_3 lines carrying Xa21 were obtained based on molecular markers and agronomic performance. The 11 lines were then inoculated with the three Xoo races. All the 11 improved lines showed better resistance to BLB than the recipient parent LT2. Based on the level of resistance to BLB and their agronomic performance, five lines (BC_3F_3 5.1.5.1, BC_3F_3 5.1.5.12, BC_3F_3 8.5.6.44, BC_3F_3 9.5.4.1 and BC_3F_3 9.5.4.23) were selected as the most promising for commercial release. These improved lines could contribute to rice production in terms of food security. 展开更多
关键词 rice BACKCROSSING bacterial LEAF blight marker-assisted selection
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部