Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor...Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained. Seven somatically hybridized plants and their parents were used for AFLP (amplified fragment length polymorphism) analysis using 8 primer pairs. Results confirmed that these plants were somatic hybrids containing the characteristic bands of both parents. The morphology of the regenerated rice showed characters of both O.sativa and O.meyeriana. Two somatic hybrids showed highest BB resistance and the other 8 plants showed moderate resistance. The new germplasms with highest resistance have been used in the rice breeding program for the improvement of bacterial blight resistance.展开更多
BACKGROUND With the widespread use of antimicrobial drugs,bacterial resistance has become a significant problem,posing a serious threat to public health.The prevalence of clinical infection strains in hospitals and th...BACKGROUND With the widespread use of antimicrobial drugs,bacterial resistance has become a significant problem,posing a serious threat to public health.The prevalence of clinical infection strains in hospitals and their drug sensitivities are key to the appropriate use of antibiotics in clinical practice.AIM To identify prevalent bacteria and their antibiotic resistance profiles in a hospital setting,thereby guiding effective antibiotic usage by clinicians.METHODS Specimens from across the institution were collected by the microbiology laboratory.The VITEK 2 compact fully automatic analyzer was used for bacterial identification and antibiotic sensitivity testing,and the WHONET5.6 software was utilized for statistical analysis.RESULTS A total of 12062 bacterial strains of key monitoring significance were detected.Staphylococcus aureus demonstrated widespread resistance to penicillin,but none of the strains were resistant to vancomycin or linezolid.Moreover,219 strains of methicillin-resistant coagulase-negative staphylococci and 110 strains of methicillin-resistant Staphylococcus aureus were detected.Enterococcus faecalis showed moderate resistance to the third-generation quinolones ciprofloxacin and levofloxacin,but its resistance to nitrofurantoin and tetracycline was low.Enterococcus faecium displayed significantly lower resistance to third-and fourthgeneration quinolones than Enterococcus faecalis.The resistance of two key monitoring strains,Escherichia coli and Klebsiella pneumoniae,to piperacillin/tazobactam was 5%-8%.However,none of the Escherichia coli and Klebsiella pneumoniae strains were resistant to meropenem.The resistance of Acinetobacter baumannii to piperacillin/sulbactam was nearly 90%.Nonetheless,the resistance to tigecycline was low,and Pseudomonas aeruginosa demonstrated minimal resistance in the antibiotic sensitivity test,maintaining a resistance of<10%to the cephalosporin antibiotics cefotetan and cefoperazone over the last 6 years.The resistance to amikacin remained at 0.2%over the past 3 years.CONCLUSION Our hospital’s overall antibiotic resistance rate was relatively stable from 2017 to 2022.The detection rates of key monitoring strains are reported quarterly and their resistance dynamics are monitored and communicated to the entire hospital,which can guide clinical antibiotic selection.展开更多
Objective:To observe and analyze the effect of bacterial resistance monitoring in clinical microbiology testing.Methods:600 microbial specimens collected in our hospital in the past year(April 2021 to April 2022)were ...Objective:To observe and analyze the effect of bacterial resistance monitoring in clinical microbiology testing.Methods:600 microbial specimens collected in our hospital in the past year(April 2021 to April 2022)were used as the test subjects of this study.The specimens were divided into Group A(control group)and Group B(research group),with 300 cases in each group.Group A consisted of blood culture specimens,while Group B consisted of sputum specimens.After the tests were completed,the rates of unfavorable and favorable results,bacterial species distribution,and bacterial drug resistance of the specimens in both groups were compared.Results:Among group A specimens,29 cases were positive(9.67%)and 271 cases were negative(90.33%);among group B specimens,99 cases were positive(33.00%)and 201 cases were negative(66.00%);the difference between the two groups of data was statistically significant(P<0.05).As for the distribution of the types of bacteria,there were 472 cases of Gram-negative bacteria and 128 cases of Gram-positive bacteria.Conclusion:Bacterial resistance monitoring is helpful in clinical microbiology testing.Through proper monitoring,bacterial resistance can be well understood.In this way,patients get to receive appropriate treatment measures and suitable antibacterial prescriptions,thereby improving the patient outcome.展开更多
Bacterial wilt (BW) caused by Ralstonia solanacearum is an important constraint to peanut (Arachis hypogaea L.) production in several Asian and African countries, and planting BW-resistant cultivars is the most fe...Bacterial wilt (BW) caused by Ralstonia solanacearum is an important constraint to peanut (Arachis hypogaea L.) production in several Asian and African countries, and planting BW-resistant cultivars is the most feasible method for controlling the disease. Although several BW-resistant peanut germplasm accessions have been identified, the genetic diversity among these has not been properly investigated, which has impeded efficient utilization. In this study, the genetic relationships of 31 peanut genotypes with various levels of resistance to BW were assessed based on SSR and AFLP analyses. Twenty-nine of 78 SSR primers and 32 of 126 AFLP primer combinations employed in this study were polymorphic amongst the peanut genotypes tested. The SSR primers amplified 91 polymorphic loci in total with an average of 3.14 alleles per primer, and the AFLP primers amplified 72 polymorphic loci in total with an average of 2.25 alleles per primer. Four SSR primers (14H06, 7G02, 3A8, 16C6) and one AFLP primer (P1M62) were found to be most efficient in detecting diversity. The genetic distance between pairs of genotypes ranged from 0.12 to 0.94 with an average of 0.53 in the SSR data and from 0.06 to 0.57 with an average of 0.25 in the AFLP data. The SSR-based estimates of the genetic distance were generally larger than that based on the AFLP data. The genotypes belonging to subsp, fastigiata possessed wider diversity than that of subsp, hypogaea. The clustering of genotypes based on the SSR and AFLP data were similar but the SSR clustering was more consistent with morphological classification ofA. hypogaea. Optimum diverse genotypes of both subsp, hypogaea and subsp.fastigiata can be recommended based on this analysis for developing mapping populations and breeding for high yielding and resistant cultivars.展开更多
This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prep...This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced.展开更多
Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. The bacterial resistance against antibiotics is a serious issue for public health. Today, new therapeuti...Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. The bacterial resistance against antibiotics is a serious issue for public health. Today, new therapeutic targets other than the bacterial wall were deciphered. Quorum sensing or bacterial pheromones are molecules called auto-inducer secreted by bacteria to regulate some functions such as antibiotic resistance and biofilms formation. This therapeutic target is well-studied worldwide, nevertheless the scientific data are not updated and only recent researches started to look into its potential as a target to fight against infectious diseases. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. Therefore, this paper aims to provide a current overview of the quorum sensing system in bacteria by revealing their implication in biofilms formation and the development of antibiotic resistance, and an update on their importance as a potential target for natural substances.展开更多
Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Impro...Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessingPi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generationwherein PCR based functional markers specific for the resistance genes were used for foregroundselection and a set of parental polymorphic microsatellite markers were used for background selectionat each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveriesof MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants,which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB andblast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54)with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants wereselfed to generate ICF3, which were then screened for blast resistance, and all were observed to behighly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB andblast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced forfurther selection and evaluation.展开更多
Knowledge of rice(Oryza sativa L.)genes and various DNA markers can be used in genomic breeding programs aimed at developing improved elite rice cultivars.We used an efficient genomic breeding approach to pyramid four...Knowledge of rice(Oryza sativa L.)genes and various DNA markers can be used in genomic breeding programs aimed at developing improved elite rice cultivars.We used an efficient genomic breeding approach to pyramid four resistance genes(Pi2,Xa23,Bph14,and Bph15)in the popular photoperiod-and thermosensitive genic male sterile(PTGMS)rice line Feng39S.We performed foreground selection for the target genes,followed by recombinant selection and background selection.This process reduced the sizes of the genomic segments harboring the target genes(566.8 kb for Pi2,1143.9 kb for Xa23,774.7 kb for Bph14,and 1574.9 kb for Bph15)and accelerated the recovery of the recurrent parent genome to proportions ranging from 98.77%to 99.16%,thus resulting in four near-isogenic lines.To assemble the four resistance genes in Feng39S,we performed a double-way cross combined with foreground and background selection to generate two improved lines of Feng39S(Pi2+Xa23+Bph14+Bph15)with a recurrent parent genome recovery of 98.98%.The two lines showed agronomic performance,grain quality,and fertility–sterility transition characteristics similar to those of the original Feng39S line.The newly developed PTGMS lines and corresponding hybrid combinations were resistant to various field blast isolates and seven representative isolates of bacterial blight.At the seedling stage,the lines also showed resistance against brown planthopper.This study provides an efficient and accurate genomic breeding approach for introducing desirable traits into PTGMS lines.展开更多
Gut flora and bacterial translocation (BT) play important roles in the pathogenesis of chronic liver disease, including cirrhosis and its complications. Intestinal bacterial overgrowth and increased bacterial transloc...Gut flora and bacterial translocation (BT) play important roles in the pathogenesis of chronic liver disease, including cirrhosis and its complications. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen predispose patients to bacterial infections, major complications and also play a role in the pathogenesis of chronic liver disorders. Levels of bacterial lipopolysaccharide, a component of gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver disease. Impaired gut epithelial integrity due to alterations in tight junction proteins may be the pathological mechanism underlying bacterial translocation. Preclinical and clinical studies over the last decade have suggested a role for BT in the pathogenesis of nonalcoholic steatohepatitis (NASH). Bacterial overgrowth, immune dysfunction, alteration of the luminal factors, and altered intestinal permeability are all involved in the pathogenesis of NASH and its complications. A better understanding of the cell-specific recognition and intracellular signaling events involved in sensing gut-derived microbes will help in the development of means to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases. These may suggest new targets for potential therapeutic interventions for the treatment of NASH. Here, we review some of the mechanisms connecting BT and NASH and potential therapeutic developments.展开更多
Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.), a pair of specific PCR primers FZ14P1/FZ14P2was designed to isolate candidate disease resistance gene. The pooled-PCR ...Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.), a pair of specific PCR primers FZ14P1/FZ14P2was designed to isolate candidate disease resistance gene. The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC) library derived from Z. latifolia. A positive TAC clone (ZR1) was obtained and confirmed by sequence analysis. The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase la), kinase 2, kinase 3a and GLPL (Gly-Leu-Pro-Leu), suggesting that it could be a portion of NBS-LRR type of resistance gene. Using Agrobacterium-mediated transformation of Nipponbare mature embryo, a total of 48 independent transgenic To plants were obtained. Among them, 36 plants were highly resistant to the virulent bacterial blight strain PXO71. The results indicate that ZR1 contains at least one functional bacterial blight resistance gene.展开更多
Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) fro...Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) from the Philippines. IR24 was highly susceptible to all the strains, and six common wild rice accessions resisted all the nine strains, with a resistance frequency of 67%. The accessions Yulin and Wanning were only susceptible to PXO280 and PXO71, respectively. The accession Gaozhou was susceptible to the three strains PXO79, PXO99 and PXO339, whereas resistant to the other six strains. It could be concluded that there is at least one resistance gene in each common wild rice accession. The functional markers of the genes xa5, xa13, Xa21 and Xa27 were used to detect the presence of these resistance genes in the nine tested wild rice accessions, and it was found that four wild rice accessions contained heterozygous xa13. Among the nine common wild rice accessions, five were homozygous for Xa27 and three homozygous for xa27, and the accession Laibin contained neither xa27 nor Xa27. In addition, there were no xa5 and Xa21 in all of these accessions.展开更多
Introduction: Antibiotic resistance is a public health problem. It is due to multi-resistant bacteria (MRB). The objective of this study was to determine bacterial resistance to antibiotics in chronic renal failure at...Introduction: Antibiotic resistance is a public health problem. It is due to multi-resistant bacteria (MRB). The objective of this study was to determine bacterial resistance to antibiotics in chronic renal failure at the Edith Lucie BONGO ONDIMBA general hospital (HGELBO). Patients, material and method: This was an analytical cross-sectional study conducted from January 1 to August 31, 2019 at the HGELBO. It concerned all patients admitted to the HGELBO with positive bacteriological samples. After a study of the sensitivity to isolated species, the patients were divided into two (02) groups: those MRB positive (+) and not MRB or negative (-). Epi Info software version 3.5.1 was used for the calculation of the rates and the comparison of the variables. The adjusted odds ratio (ORa) with a 95% confidence interval was used to measure the specific effect of each risk factor such as chronic kidney disease and diabetes, in order to rule out confounding factors. Multivariate analysis by binomial logistic regression was used. Results: There were 375 bacteriological samples from 258 patients, among them 247 patients with 235 positive samples or 63%. The eleven (11) are healthy patients. The median age was 33 with extremes ranging from 16 to 90. The female sex was predominant with a sex ratio of 0.6. The majority of MRB+ cases were found in internal medicine and nephrology with 12 cases (38.7%) and hemodialysis with 4 cases (12.9%). Urinary samples were in the majority with 74.5%. <i>Escherichia coli</i> was predominant in 30.3%. After studying the sensitivity to antibiotics of the 247 species included, 113 were MRB+ and 134 BMR- <i>i.e.</i> a frequency of 45.7%. Methicilin-resistant <i>Staphylococcus aureus</i> (MRSA) was predominant (51.3%). Multivariate logistic regression analysis showed that the main risk factor was antibiotic use (0Ra: 3.2 [1.9 - 5.4];p-value < 0.01). Chronic renal failure and diabetes were not risk factors for carriage. The other risk factors identified were: hospitalization of more than 7 days (prolonged), <i>S. aureus</i> infection and male sex. Conclusion: Probabilistic antibiotic therapy leads to the selection of BMRs. Long hospital stays, male sex, and MRSA are risk factors or determinants of antibiotic resistance, but not chronic kidney disease.展开更多
<strong>Background: </strong>Coronavirus Disease 2019 (COVID-19) has infected millions people worldwide and is continuing to spread rapidly. Patients with COVID-19 may be superinfected with other microorga...<strong>Background: </strong>Coronavirus Disease 2019 (COVID-19) has infected millions people worldwide and is continuing to spread rapidly. Patients with COVID-19 may be superinfected with other microorganisms. The prevalence of bacterial superinfection among coronavirus patients is not well understood. <strong>Aim:</strong> The aim of presenting this case is to highlight the problem of Multi-Drug Resistant (MDR) bacterial infection in COVID-19 patients. <strong>Case Presentation: </strong>Here we reported a 46 years old patient with the previous history of <em>Escherichia coli </em>urinary tract infection. A few weeks later, the patient was recovered from COVID-19 infection and was treated with antiviral therapy until PCR results become negative. Meanwhile, the patients developed urinary tract infection with MDR <em>Escherichia coli</em> even resistant to imipenem and required a critical treatment. <strong>Conclusion: </strong>Our finding suggests that greater attention should be paid to coronavirus infection complications and prophylaxis use of antibiotics. In addition, more studies are required to better understand the risk factors which are responsible for the superinfection and emergence of drug-resistant strains during COVID-19 infection.展开更多
Natural clays have been used by man in infections of bacterial etiology, since the first historical registers. Our attention turned to a red-colored clay, known in the northeast of Brazil as “barro de louça”...Natural clays have been used by man in infections of bacterial etiology, since the first historical registers. Our attention turned to a red-colored clay, known in the northeast of Brazil as “barro de louça” (dish clay). These clays and other natural earth materials seem interesting to us, as the blockage of the liberation of toxins or inactivation, may be related to the interruption of infection cycles in the skin and mucous membranes. The adsorptive and absorptive properties of the mineral clays are well documented in the cure process of skin and gastrointestinal diseases. Susceptibility and bacterial tropism tests were carried out. The results were analyzed and interpreted according to the conventional microbiological protocol. The bacterial strains, Staphylococcus aureus, Escherichia coli e Pseudomonas aeruginosa, did not present a susceptibility profile to an isotonic solution of clay, but there was an increase of the bacterial tropism as the concentration of the isotonic solution was increased, being the minimal observed concentration of 100 mg/mL. Our aim is to document a type of red clay from the northeast of Brazil with possible attraction properties (Tropism) to bacteria and their toxins.展开更多
We analyzed the resistant inheritance of ajaponica variety,Jia23,to two bacterial blightpathogen strains,KS-6-6 and Zhe 173,rep-resenting respectively the two predominantpathogenic types(Ⅱ and Ⅳ)in the rice crop-pin...We analyzed the resistant inheritance of ajaponica variety,Jia23,to two bacterial blightpathogen strains,KS-6-6 and Zhe 173,rep-resenting respectively the two predominantpathogenic types(Ⅱ and Ⅳ)in the rice crop-ping area along the Yangtze River Valley.Jia23 was crossed with susceptible vari-eties,Ewan8 and 7416.Fplants were back-展开更多
Bacterial blight (BB) is one of the major dis-eases to rice. Antibacterial Cecropin B genehas been cloned and transformed into rice. Westudied the resistance to bacterial blight inCecropin B gene transgenic rices.Rice...Bacterial blight (BB) is one of the major dis-eases to rice. Antibacterial Cecropin B genehas been cloned and transformed into rice. Westudied the resistance to bacterial blight inCecropin B gene transgenic rices.Rice variety JYll9 transformed withCecropin B gene by particle bombardment andprogenies were randomly planted in the field in展开更多
Bacterial streak (BS) caused by Xanthomonascampestris pv. oryzicola has become one of themajor diseases in southern rice areas. Up todate, there are few reports on the inheritanceof resistance to BS and its relationsh...Bacterial streak (BS) caused by Xanthomonascampestris pv. oryzicola has become one of themajor diseases in southern rice areas. Up todate, there are few reports on the inheritanceof resistance to BS and its relationship with theresistance to bacterial blight (BB). Therefore,we analyzed the inheritance of resistant to BSin three resistant rice cultivars and the geneticrelationship of resistance between BS and BB.展开更多
From 1986 to 1993, a set of near-isogenic japonicarice Iines with three major genes Xα-3, Xα - 4,and Xα-12 for resistance to bacterial blight(Xan-thomonas oryzae pv.oryzae)were developed anddesignated as CBB3, CBB4...From 1986 to 1993, a set of near-isogenic japonicarice Iines with three major genes Xα-3, Xα - 4,and Xα-12 for resistance to bacterial blight(Xan-thomonas oryzae pv.oryzae)were developed anddesignated as CBB3, CBB4, and CBB12 respective-展开更多
A set of near-isogenic rice lines withmonogenic resistance to bacterial blight weredeveloped by IRRI.The Cultivar IR24 wasused as the recurred parent.They wereevaluated with 6 races of Xanthomonascampestris pv.oryzae(...A set of near-isogenic rice lines withmonogenic resistance to bacterial blight weredeveloped by IRRI.The Cultivar IR24 wasused as the recurred parent.They wereevaluated with 6 races of Xanthomonascampestris pv.oryzae(Xco)in the Philip-pines at the maximum tillering and the bootingstages by ZHANG and MEW at IRRI in 1989.展开更多
Photocatalytic antibacterial approach shows great potential in treating multidrug-resistant bacterial infections.However,the bactericidal efficiency heavily depends on the photocatalytic activity of semiconductor mate...Photocatalytic antibacterial approach shows great potential in treating multidrug-resistant bacterial infections.However,the bactericidal efficiency heavily depends on the photocatalytic activity of semiconductor materials,which is limited by the fast recombination of photogenerated electron–hole pairs.Janus nano-heterostructures with spatial control growth of TiO_(2)nanoparticles(NPs)at one end of gold nanorods(Au NRs)are designed via surface ligand regulation for photocatalytic sterilization and infected wound healing.The asymmetric nanostructure of Janus gold nanorod-titanium dioxide nanoparticles(Janus AuNR-TiO_(2) NPs)promotes the directional migration of charge carriers and is more conducive to the spatial separation of electron–hole pairs.Moreover,the injection of hot electrons and enhancement of plasmon near-fields from the surface plasmon resonance(SPR)effect further improve the photocatalytic efficiency of Janus AuNR-TiO_(2) NPs.Under simulated sunlight irradiation,large amounts of reactive oxygen species(ROS)are generated for photocatalytic antibacterial activity.Enhanced bactericidal efficiency up to 99.99%against methicillin-resistant Staphylococcus aureus(MRSA)is achieved in vitro.Furthermore,Janus AuNR-TiO_(2) NPs exhibit superior biocompatibility,structural stability,and also remarkably accelerate MRSA-infected wound healing.Taking the above all into consideration,Janus AuNR-TiO_(2) NPs,as an efficient antibacterial photocatalyst,offers a promising strategy for MRSA infectious therapy.展开更多
文摘Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained. Seven somatically hybridized plants and their parents were used for AFLP (amplified fragment length polymorphism) analysis using 8 primer pairs. Results confirmed that these plants were somatic hybrids containing the characteristic bands of both parents. The morphology of the regenerated rice showed characters of both O.sativa and O.meyeriana. Two somatic hybrids showed highest BB resistance and the other 8 plants showed moderate resistance. The new germplasms with highest resistance have been used in the rice breeding program for the improvement of bacterial blight resistance.
文摘BACKGROUND With the widespread use of antimicrobial drugs,bacterial resistance has become a significant problem,posing a serious threat to public health.The prevalence of clinical infection strains in hospitals and their drug sensitivities are key to the appropriate use of antibiotics in clinical practice.AIM To identify prevalent bacteria and their antibiotic resistance profiles in a hospital setting,thereby guiding effective antibiotic usage by clinicians.METHODS Specimens from across the institution were collected by the microbiology laboratory.The VITEK 2 compact fully automatic analyzer was used for bacterial identification and antibiotic sensitivity testing,and the WHONET5.6 software was utilized for statistical analysis.RESULTS A total of 12062 bacterial strains of key monitoring significance were detected.Staphylococcus aureus demonstrated widespread resistance to penicillin,but none of the strains were resistant to vancomycin or linezolid.Moreover,219 strains of methicillin-resistant coagulase-negative staphylococci and 110 strains of methicillin-resistant Staphylococcus aureus were detected.Enterococcus faecalis showed moderate resistance to the third-generation quinolones ciprofloxacin and levofloxacin,but its resistance to nitrofurantoin and tetracycline was low.Enterococcus faecium displayed significantly lower resistance to third-and fourthgeneration quinolones than Enterococcus faecalis.The resistance of two key monitoring strains,Escherichia coli and Klebsiella pneumoniae,to piperacillin/tazobactam was 5%-8%.However,none of the Escherichia coli and Klebsiella pneumoniae strains were resistant to meropenem.The resistance of Acinetobacter baumannii to piperacillin/sulbactam was nearly 90%.Nonetheless,the resistance to tigecycline was low,and Pseudomonas aeruginosa demonstrated minimal resistance in the antibiotic sensitivity test,maintaining a resistance of<10%to the cephalosporin antibiotics cefotetan and cefoperazone over the last 6 years.The resistance to amikacin remained at 0.2%over the past 3 years.CONCLUSION Our hospital’s overall antibiotic resistance rate was relatively stable from 2017 to 2022.The detection rates of key monitoring strains are reported quarterly and their resistance dynamics are monitored and communicated to the entire hospital,which can guide clinical antibiotic selection.
文摘Objective:To observe and analyze the effect of bacterial resistance monitoring in clinical microbiology testing.Methods:600 microbial specimens collected in our hospital in the past year(April 2021 to April 2022)were used as the test subjects of this study.The specimens were divided into Group A(control group)and Group B(research group),with 300 cases in each group.Group A consisted of blood culture specimens,while Group B consisted of sputum specimens.After the tests were completed,the rates of unfavorable and favorable results,bacterial species distribution,and bacterial drug resistance of the specimens in both groups were compared.Results:Among group A specimens,29 cases were positive(9.67%)and 271 cases were negative(90.33%);among group B specimens,99 cases were positive(33.00%)and 201 cases were negative(66.00%);the difference between the two groups of data was statistically significant(P<0.05).As for the distribution of the types of bacteria,there were 472 cases of Gram-negative bacteria and 128 cases of Gram-positive bacteria.Conclusion:Bacterial resistance monitoring is helpful in clinical microbiology testing.Through proper monitoring,bacterial resistance can be well understood.In this way,patients get to receive appropriate treatment measures and suitable antibacterial prescriptions,thereby improving the patient outcome.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(No.30070521 and 30270840).
文摘Bacterial wilt (BW) caused by Ralstonia solanacearum is an important constraint to peanut (Arachis hypogaea L.) production in several Asian and African countries, and planting BW-resistant cultivars is the most feasible method for controlling the disease. Although several BW-resistant peanut germplasm accessions have been identified, the genetic diversity among these has not been properly investigated, which has impeded efficient utilization. In this study, the genetic relationships of 31 peanut genotypes with various levels of resistance to BW were assessed based on SSR and AFLP analyses. Twenty-nine of 78 SSR primers and 32 of 126 AFLP primer combinations employed in this study were polymorphic amongst the peanut genotypes tested. The SSR primers amplified 91 polymorphic loci in total with an average of 3.14 alleles per primer, and the AFLP primers amplified 72 polymorphic loci in total with an average of 2.25 alleles per primer. Four SSR primers (14H06, 7G02, 3A8, 16C6) and one AFLP primer (P1M62) were found to be most efficient in detecting diversity. The genetic distance between pairs of genotypes ranged from 0.12 to 0.94 with an average of 0.53 in the SSR data and from 0.06 to 0.57 with an average of 0.25 in the AFLP data. The SSR-based estimates of the genetic distance were generally larger than that based on the AFLP data. The genotypes belonging to subsp, fastigiata possessed wider diversity than that of subsp, hypogaea. The clustering of genotypes based on the SSR and AFLP data were similar but the SSR clustering was more consistent with morphological classification ofA. hypogaea. Optimum diverse genotypes of both subsp, hypogaea and subsp.fastigiata can be recommended based on this analysis for developing mapping populations and breeding for high yielding and resistant cultivars.
文摘This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced.
文摘Traditional treatment of infectious diseases is based on compounds that aim to kill or inhibit bacterial growth. The bacterial resistance against antibiotics is a serious issue for public health. Today, new therapeutic targets other than the bacterial wall were deciphered. Quorum sensing or bacterial pheromones are molecules called auto-inducer secreted by bacteria to regulate some functions such as antibiotic resistance and biofilms formation. This therapeutic target is well-studied worldwide, nevertheless the scientific data are not updated and only recent researches started to look into its potential as a target to fight against infectious diseases. A major concern with this approach is the frequently observed development of resistance to antimicrobial compounds. Therefore, this paper aims to provide a current overview of the quorum sensing system in bacteria by revealing their implication in biofilms formation and the development of antibiotic resistance, and an update on their importance as a potential target for natural substances.
基金supported by the Department of Biotechnology(DBT),Government of India(Grant No.BT/PR11705/AGR/02/646/2008)
文摘Two major bacterial blight (BB) resistance genes (Xa21 and xa13) and a major gene for blastresistance (Pi54) were introgressed into an Indian rice variety MTU1010 through marker-assistedbackcross breeding. Improved Samba Mahsuri (possessing Xa21 and xa13) and NLR145 (possessingPi54) were used as donor parents. Marker-assisted backcrossing was continued till BC2 generationwherein PCR based functional markers specific for the resistance genes were used for foregroundselection and a set of parental polymorphic microsatellite markers were used for background selectionat each stage of backcrossing. Selected BC2F1 plants from both crosses, having the highest recoveriesof MTU1010 genome (90% and 92%, respectively), were intercrossed to obtain intercross F1 (ICF1) plants,which were then selfed to generate 880 ICF2 plants possessing different combinations of the BB andblast resistance genes. Among the ICF2 plants, seven triple homozygous plants (xa13xa13Xa21Xa21Pi54Pi54)with recurrent parent genome recovery ranging from 82% to 92% were identified. All the seven ICF2plants showed high resistance against the bacterial blight disease with a lesion lengths of only 0.53–2.28 cm, 1%–5% disease leaf areas and disease scoring values of ‘1’ or ‘3’. The seven ICF2 plants wereselfed to generate ICF3, which were then screened for blast resistance, and all were observed to behighly resistant to the diseases. Several ICF3 lines possessing high level of resistance against BB andblast, coupled with yield, grain quality and plant type on par with MTU1010 were identified and advanced forfurther selection and evaluation.
基金supported by the National Natural Science Foundation of China(31821005)Hubei Provincial Natural Science Foundation of China(2020CFB192)the Fundamental Research Funds for the Central Universities of China(2662019QD051).
文摘Knowledge of rice(Oryza sativa L.)genes and various DNA markers can be used in genomic breeding programs aimed at developing improved elite rice cultivars.We used an efficient genomic breeding approach to pyramid four resistance genes(Pi2,Xa23,Bph14,and Bph15)in the popular photoperiod-and thermosensitive genic male sterile(PTGMS)rice line Feng39S.We performed foreground selection for the target genes,followed by recombinant selection and background selection.This process reduced the sizes of the genomic segments harboring the target genes(566.8 kb for Pi2,1143.9 kb for Xa23,774.7 kb for Bph14,and 1574.9 kb for Bph15)and accelerated the recovery of the recurrent parent genome to proportions ranging from 98.77%to 99.16%,thus resulting in four near-isogenic lines.To assemble the four resistance genes in Feng39S,we performed a double-way cross combined with foreground and background selection to generate two improved lines of Feng39S(Pi2+Xa23+Bph14+Bph15)with a recurrent parent genome recovery of 98.98%.The two lines showed agronomic performance,grain quality,and fertility–sterility transition characteristics similar to those of the original Feng39S line.The newly developed PTGMS lines and corresponding hybrid combinations were resistant to various field blast isolates and seven representative isolates of bacterial blight.At the seedling stage,the lines also showed resistance against brown planthopper.This study provides an efficient and accurate genomic breeding approach for introducing desirable traits into PTGMS lines.
基金Supported by Immuron, Nasvax, Plantylight, Desert Labs,Teva Pharmaceutical and ENZO Biochem
文摘Gut flora and bacterial translocation (BT) play important roles in the pathogenesis of chronic liver disease, including cirrhosis and its complications. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen predispose patients to bacterial infections, major complications and also play a role in the pathogenesis of chronic liver disorders. Levels of bacterial lipopolysaccharide, a component of gram-negative bacteria, are increased in the portal and/or systemic circulation in several types of chronic liver disease. Impaired gut epithelial integrity due to alterations in tight junction proteins may be the pathological mechanism underlying bacterial translocation. Preclinical and clinical studies over the last decade have suggested a role for BT in the pathogenesis of nonalcoholic steatohepatitis (NASH). Bacterial overgrowth, immune dysfunction, alteration of the luminal factors, and altered intestinal permeability are all involved in the pathogenesis of NASH and its complications. A better understanding of the cell-specific recognition and intracellular signaling events involved in sensing gut-derived microbes will help in the development of means to achieve an optimal balance in the gut-liver axis and ameliorate liver diseases. These may suggest new targets for potential therapeutic interventions for the treatment of NASH. Here, we review some of the mechanisms connecting BT and NASH and potential therapeutic developments.
基金supported by the National Natural Science Foundation of China (Grant No. 30760115)Transgenic Program (Grant No. 2008ZX08001-002)
文摘Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.), a pair of specific PCR primers FZ14P1/FZ14P2was designed to isolate candidate disease resistance gene. The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC) library derived from Z. latifolia. A positive TAC clone (ZR1) was obtained and confirmed by sequence analysis. The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase la), kinase 2, kinase 3a and GLPL (Gly-Leu-Pro-Leu), suggesting that it could be a portion of NBS-LRR type of resistance gene. Using Agrobacterium-mediated transformation of Nipponbare mature embryo, a total of 48 independent transgenic To plants were obtained. Among them, 36 plants were highly resistant to the virulent bacterial blight strain PXO71. The results indicate that ZR1 contains at least one functional bacterial blight resistance gene.
基金supported by the Project of the National Ministry of Science and Technology,China (Grant No.2006AA10Z1C8)the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant Nos.KSCX-YW-N-009-02 and KSCX1-YW-03)+1 种基金the National Basic Research Program of China (Grant No.2009CB126004)the Natural Science Foundation of Hainan Province,China (Grant No.309019)
文摘Field resistances of nine accessions of common wild rice (Oryza rufipogon Griff.) and one rice variety (IR24) were evaluated by using nine strains of bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) from the Philippines. IR24 was highly susceptible to all the strains, and six common wild rice accessions resisted all the nine strains, with a resistance frequency of 67%. The accessions Yulin and Wanning were only susceptible to PXO280 and PXO71, respectively. The accession Gaozhou was susceptible to the three strains PXO79, PXO99 and PXO339, whereas resistant to the other six strains. It could be concluded that there is at least one resistance gene in each common wild rice accession. The functional markers of the genes xa5, xa13, Xa21 and Xa27 were used to detect the presence of these resistance genes in the nine tested wild rice accessions, and it was found that four wild rice accessions contained heterozygous xa13. Among the nine common wild rice accessions, five were homozygous for Xa27 and three homozygous for xa27, and the accession Laibin contained neither xa27 nor Xa27. In addition, there were no xa5 and Xa21 in all of these accessions.
文摘Introduction: Antibiotic resistance is a public health problem. It is due to multi-resistant bacteria (MRB). The objective of this study was to determine bacterial resistance to antibiotics in chronic renal failure at the Edith Lucie BONGO ONDIMBA general hospital (HGELBO). Patients, material and method: This was an analytical cross-sectional study conducted from January 1 to August 31, 2019 at the HGELBO. It concerned all patients admitted to the HGELBO with positive bacteriological samples. After a study of the sensitivity to isolated species, the patients were divided into two (02) groups: those MRB positive (+) and not MRB or negative (-). Epi Info software version 3.5.1 was used for the calculation of the rates and the comparison of the variables. The adjusted odds ratio (ORa) with a 95% confidence interval was used to measure the specific effect of each risk factor such as chronic kidney disease and diabetes, in order to rule out confounding factors. Multivariate analysis by binomial logistic regression was used. Results: There were 375 bacteriological samples from 258 patients, among them 247 patients with 235 positive samples or 63%. The eleven (11) are healthy patients. The median age was 33 with extremes ranging from 16 to 90. The female sex was predominant with a sex ratio of 0.6. The majority of MRB+ cases were found in internal medicine and nephrology with 12 cases (38.7%) and hemodialysis with 4 cases (12.9%). Urinary samples were in the majority with 74.5%. <i>Escherichia coli</i> was predominant in 30.3%. After studying the sensitivity to antibiotics of the 247 species included, 113 were MRB+ and 134 BMR- <i>i.e.</i> a frequency of 45.7%. Methicilin-resistant <i>Staphylococcus aureus</i> (MRSA) was predominant (51.3%). Multivariate logistic regression analysis showed that the main risk factor was antibiotic use (0Ra: 3.2 [1.9 - 5.4];p-value < 0.01). Chronic renal failure and diabetes were not risk factors for carriage. The other risk factors identified were: hospitalization of more than 7 days (prolonged), <i>S. aureus</i> infection and male sex. Conclusion: Probabilistic antibiotic therapy leads to the selection of BMRs. Long hospital stays, male sex, and MRSA are risk factors or determinants of antibiotic resistance, but not chronic kidney disease.
文摘<strong>Background: </strong>Coronavirus Disease 2019 (COVID-19) has infected millions people worldwide and is continuing to spread rapidly. Patients with COVID-19 may be superinfected with other microorganisms. The prevalence of bacterial superinfection among coronavirus patients is not well understood. <strong>Aim:</strong> The aim of presenting this case is to highlight the problem of Multi-Drug Resistant (MDR) bacterial infection in COVID-19 patients. <strong>Case Presentation: </strong>Here we reported a 46 years old patient with the previous history of <em>Escherichia coli </em>urinary tract infection. A few weeks later, the patient was recovered from COVID-19 infection and was treated with antiviral therapy until PCR results become negative. Meanwhile, the patients developed urinary tract infection with MDR <em>Escherichia coli</em> even resistant to imipenem and required a critical treatment. <strong>Conclusion: </strong>Our finding suggests that greater attention should be paid to coronavirus infection complications and prophylaxis use of antibiotics. In addition, more studies are required to better understand the risk factors which are responsible for the superinfection and emergence of drug-resistant strains during COVID-19 infection.
文摘Natural clays have been used by man in infections of bacterial etiology, since the first historical registers. Our attention turned to a red-colored clay, known in the northeast of Brazil as “barro de louça” (dish clay). These clays and other natural earth materials seem interesting to us, as the blockage of the liberation of toxins or inactivation, may be related to the interruption of infection cycles in the skin and mucous membranes. The adsorptive and absorptive properties of the mineral clays are well documented in the cure process of skin and gastrointestinal diseases. Susceptibility and bacterial tropism tests were carried out. The results were analyzed and interpreted according to the conventional microbiological protocol. The bacterial strains, Staphylococcus aureus, Escherichia coli e Pseudomonas aeruginosa, did not present a susceptibility profile to an isotonic solution of clay, but there was an increase of the bacterial tropism as the concentration of the isotonic solution was increased, being the minimal observed concentration of 100 mg/mL. Our aim is to document a type of red clay from the northeast of Brazil with possible attraction properties (Tropism) to bacteria and their toxins.
文摘We analyzed the resistant inheritance of ajaponica variety,Jia23,to two bacterial blightpathogen strains,KS-6-6 and Zhe 173,rep-resenting respectively the two predominantpathogenic types(Ⅱ and Ⅳ)in the rice crop-ping area along the Yangtze River Valley.Jia23 was crossed with susceptible vari-eties,Ewan8 and 7416.Fplants were back-
文摘Bacterial blight (BB) is one of the major dis-eases to rice. Antibacterial Cecropin B genehas been cloned and transformed into rice. Westudied the resistance to bacterial blight inCecropin B gene transgenic rices.Rice variety JYll9 transformed withCecropin B gene by particle bombardment andprogenies were randomly planted in the field in
文摘Bacterial streak (BS) caused by Xanthomonascampestris pv. oryzicola has become one of themajor diseases in southern rice areas. Up todate, there are few reports on the inheritanceof resistance to BS and its relationship with theresistance to bacterial blight (BB). Therefore,we analyzed the inheritance of resistant to BSin three resistant rice cultivars and the geneticrelationship of resistance between BS and BB.
文摘From 1986 to 1993, a set of near-isogenic japonicarice Iines with three major genes Xα-3, Xα - 4,and Xα-12 for resistance to bacterial blight(Xan-thomonas oryzae pv.oryzae)were developed anddesignated as CBB3, CBB4, and CBB12 respective-
文摘A set of near-isogenic rice lines withmonogenic resistance to bacterial blight weredeveloped by IRRI.The Cultivar IR24 wasused as the recurred parent.They wereevaluated with 6 races of Xanthomonascampestris pv.oryzae(Xco)in the Philip-pines at the maximum tillering and the bootingstages by ZHANG and MEW at IRRI in 1989.
基金supported by the National Natural Science Foundation of China(Nos.21874024,32101074,and U21A20377)the Joint Research Program of Health and Education Commission of Fujian Province(No.2019-WJ-20)the Natural Science Foundation of Fujian Province(No.2020J02012).
文摘Photocatalytic antibacterial approach shows great potential in treating multidrug-resistant bacterial infections.However,the bactericidal efficiency heavily depends on the photocatalytic activity of semiconductor materials,which is limited by the fast recombination of photogenerated electron–hole pairs.Janus nano-heterostructures with spatial control growth of TiO_(2)nanoparticles(NPs)at one end of gold nanorods(Au NRs)are designed via surface ligand regulation for photocatalytic sterilization and infected wound healing.The asymmetric nanostructure of Janus gold nanorod-titanium dioxide nanoparticles(Janus AuNR-TiO_(2) NPs)promotes the directional migration of charge carriers and is more conducive to the spatial separation of electron–hole pairs.Moreover,the injection of hot electrons and enhancement of plasmon near-fields from the surface plasmon resonance(SPR)effect further improve the photocatalytic efficiency of Janus AuNR-TiO_(2) NPs.Under simulated sunlight irradiation,large amounts of reactive oxygen species(ROS)are generated for photocatalytic antibacterial activity.Enhanced bactericidal efficiency up to 99.99%against methicillin-resistant Staphylococcus aureus(MRSA)is achieved in vitro.Furthermore,Janus AuNR-TiO_(2) NPs exhibit superior biocompatibility,structural stability,and also remarkably accelerate MRSA-infected wound healing.Taking the above all into consideration,Janus AuNR-TiO_(2) NPs,as an efficient antibacterial photocatalyst,offers a promising strategy for MRSA infectious therapy.