针对传统方法通常选取角点或极值点作为特征点,忽略了局部纹理变化从而影响医学影像分类性能的问题,提出一种新的特征点检测和描述方法,并应用Bag-of-Keypoints模型实现医学影像分类。首先改进自适应的Kmeans对影像进行像素级聚类,构建...针对传统方法通常选取角点或极值点作为特征点,忽略了局部纹理变化从而影响医学影像分类性能的问题,提出一种新的特征点检测和描述方法,并应用Bag-of-Keypoints模型实现医学影像分类。首先改进自适应的Kmeans对影像进行像素级聚类,构建核值相似区并选取邻域内聚类分布变化急剧的像素点作为特征点;然后在极坐标系中定义特征点描述符并生成视觉词典,通过视觉词直方图描述影像;最后利用直方图交集方法度量影像间的相似度来扩展KNN(K-nearest neighbor)完成分类。遵循IRMA(image retrival in medical appication)的医学影像类别编码标准,严格选择实验数据,结果表明该算法较传统方法 F1值平均提高4.5%,对于不同类别影像效果更加稳定鲁棒,从而更好地满足临床应用需求。展开更多
文摘针对传统方法通常选取角点或极值点作为特征点,忽略了局部纹理变化从而影响医学影像分类性能的问题,提出一种新的特征点检测和描述方法,并应用Bag-of-Keypoints模型实现医学影像分类。首先改进自适应的Kmeans对影像进行像素级聚类,构建核值相似区并选取邻域内聚类分布变化急剧的像素点作为特征点;然后在极坐标系中定义特征点描述符并生成视觉词典,通过视觉词直方图描述影像;最后利用直方图交集方法度量影像间的相似度来扩展KNN(K-nearest neighbor)完成分类。遵循IRMA(image retrival in medical appication)的医学影像类别编码标准,严格选择实验数据,结果表明该算法较传统方法 F1值平均提高4.5%,对于不同类别影像效果更加稳定鲁棒,从而更好地满足临床应用需求。