Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates.The specimens with various nickel contents were adopted for the observation.In ...Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates.The specimens with various nickel contents were adopted for the observation.In the specimen with low fraction of Ni(≤2 wt.%),granular bainite microstructure(i.e.broad surface relief)transformation from intragranular nucleation site was in-situ observed,while,lath bainite microstructure originating from grain boundary of austenite was in-situ observed for specimens with high mass percentage of Ni(≥4 wt.%).With increasing nickel content,the transformation temperature dropped.The prior austenite grain size was initially depressed and subsequently coarsened dramatically with the addition of Ni.The microstructure difference was ascribed to various nucleation sites and growth direction in the matrix.On account of those observations,not only the chemical component,cooling rate and microstructure were systematically correlated,but also the microstructural evolution was definite.展开更多
To investigate the tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure,tensile tests with strains of 0.05,0.12 and 0.22 were performed at room temperature.Microstructure of...To investigate the tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure,tensile tests with strains of 0.05,0.12 and 0.22 were performed at room temperature.Microstructure of tested steels was observed by means of optical microscopy(OM),transmission electron microscopy(TEM)and scanning electron microscopy(SEM).Tensile mechanical properties of tested steels were obtained,and the influence of bainite content on deformation behavior was also discussed.Meanwhile,the deformation mechanism of steel with three kinds of microstructures of bainite,pearlite and ferrite was analyzed.Results show that tested steel with high volume fraction of bainite exhibits a continuous deformation behavior,and this may be attributed to a higher bainite volume fraction and a lower mobile dislocation density.The morphology of microstructure will influence the mechanical properties of tested steels.An increasing content of bainite can improve the tensile strength,but reduce the plasticity and toughness of the tested steels.In the deformation process of 0.039 Nb steel,the ferrite and bainite have priorities to deform,and the deformation exhibits co-deformation of all microstructures in the later stage of deformation.In the deformation process of 0.024Nb-0.032 Vsteel,the ferrite and pearlite have priorities to deform,and the deformation exhibits co-deformation of all microstructures in the later stage of deformation.展开更多
基金financially supported by National Natural Science Foundation of China (No.51675255)Pre-research of National Basic Research Program of China(2014CB660810)the Rose Willow Outstanding Individual Programs of Lanzhou University of Technology(J201203)
文摘Microstructural evolution in weld metals was in-situ observed through utilizing a laser scanning confocal microscope at two cooling rates.The specimens with various nickel contents were adopted for the observation.In the specimen with low fraction of Ni(≤2 wt.%),granular bainite microstructure(i.e.broad surface relief)transformation from intragranular nucleation site was in-situ observed,while,lath bainite microstructure originating from grain boundary of austenite was in-situ observed for specimens with high mass percentage of Ni(≥4 wt.%).With increasing nickel content,the transformation temperature dropped.The prior austenite grain size was initially depressed and subsequently coarsened dramatically with the addition of Ni.The microstructure difference was ascribed to various nucleation sites and growth direction in the matrix.On account of those observations,not only the chemical component,cooling rate and microstructure were systematically correlated,but also the microstructural evolution was definite.
基金funded by National Natural Science Foundation of China(51261009)
文摘To investigate the tensile deformation behavior of high strength anti-seismic steel with multi-phase microstructure,tensile tests with strains of 0.05,0.12 and 0.22 were performed at room temperature.Microstructure of tested steels was observed by means of optical microscopy(OM),transmission electron microscopy(TEM)and scanning electron microscopy(SEM).Tensile mechanical properties of tested steels were obtained,and the influence of bainite content on deformation behavior was also discussed.Meanwhile,the deformation mechanism of steel with three kinds of microstructures of bainite,pearlite and ferrite was analyzed.Results show that tested steel with high volume fraction of bainite exhibits a continuous deformation behavior,and this may be attributed to a higher bainite volume fraction and a lower mobile dislocation density.The morphology of microstructure will influence the mechanical properties of tested steels.An increasing content of bainite can improve the tensile strength,but reduce the plasticity and toughness of the tested steels.In the deformation process of 0.039 Nb steel,the ferrite and bainite have priorities to deform,and the deformation exhibits co-deformation of all microstructures in the later stage of deformation.In the deformation process of 0.024Nb-0.032 Vsteel,the ferrite and pearlite have priorities to deform,and the deformation exhibits co-deformation of all microstructures in the later stage of deformation.