Characterizing the kerogen-hosted pore structures is essential to understand the adsorption,transport and storage potential in organic-rich shale reservoirs.In this paper,we first separated the organic matter(kerogen)...Characterizing the kerogen-hosted pore structures is essential to understand the adsorption,transport and storage potential in organic-rich shale reservoirs.In this paper,we first separated the organic matter(kerogen)from the mineral matrix in four different shale samples of the Bakken Formation with different thermal maturities and then analyzed their chemical compositions using the wide-angle X-ray scattering(WAXS)method.Next,we acquired small-angle X-ray scattering(SAXS)to characterize the structure of the organic matter and see how these two will relate.The WAXS results showed that the isolated kerogens have high purity(free of inorganic minerals)and retain different chemical compositions.Moreover,SAXS analysis revealed that the isolated kerogens have similar radius of gyration(R_(g))which is around 90Åand the molecules are in the compact mode.Based on the pore size distribution analysis from the SAXS data,two main peaks were found in all of these four samples with one peak less than 40Åand the other one larger than 1000Å.Also,the TEM images revealed that Sample 1 is abundant in pores with sizes around 20 nm while Sample 2 does not have pores of that size,which agrees with the results from the pore size distribution that was obtained from the SAXS method.Ultimately,this study exhibits how different analytical instruments can provide us with useful information from complex structures of geomaterials.展开更多
A workflow that helps identify potential production sweet spots in the Middle Bakken tight oil play is proposed based on analysis of large amounts of production data. The proposed approach is a multivariate statistica...A workflow that helps identify potential production sweet spots in the Middle Bakken tight oil play is proposed based on analysis of large amounts of production data. The proposed approach is a multivariate statistical model that extracts relevant information from a training dataset of production wells to facilitate geological similarity comparison between economic and sub-economic production wells. The model is applied to the Middle Bakken tight oil play in southeastern Saskatchewan. Data screening for diagnostic geological indicators for sweet spots reveals that several geological factors indicative for conventional oil reservoirs seem to work for the Middle Bakken tight oil play as well. These factors include: a) the NE Torqunay-Rocanville Trend serving as a preferred regional migration path for connecting mature source rock in southern Williston Basin and the Middle Bakken tight reservoir in southeastern Saskatchewan; b) the oils in the Bakken tight reservoirs along the U.S. and Canada border are more likely from local matured Bakken source rocks; c) subtle structural components enhancing the convergence of dispersed hydrocarbons over a large area; d) top seal and lateral barrier improving preservation, thus favouring oil productivity; e) orientation of maximum horizontal stress coincident with the direction of the variogram spatial continuity in ultimate recoverable reserves, so the direction of horizontal well has a significant impact on the oil productivity.展开更多
文摘Characterizing the kerogen-hosted pore structures is essential to understand the adsorption,transport and storage potential in organic-rich shale reservoirs.In this paper,we first separated the organic matter(kerogen)from the mineral matrix in four different shale samples of the Bakken Formation with different thermal maturities and then analyzed their chemical compositions using the wide-angle X-ray scattering(WAXS)method.Next,we acquired small-angle X-ray scattering(SAXS)to characterize the structure of the organic matter and see how these two will relate.The WAXS results showed that the isolated kerogens have high purity(free of inorganic minerals)and retain different chemical compositions.Moreover,SAXS analysis revealed that the isolated kerogens have similar radius of gyration(R_(g))which is around 90Åand the molecules are in the compact mode.Based on the pore size distribution analysis from the SAXS data,two main peaks were found in all of these four samples with one peak less than 40Åand the other one larger than 1000Å.Also,the TEM images revealed that Sample 1 is abundant in pores with sizes around 20 nm while Sample 2 does not have pores of that size,which agrees with the results from the pore size distribution that was obtained from the SAXS method.Ultimately,this study exhibits how different analytical instruments can provide us with useful information from complex structures of geomaterials.
基金The Program of Energy Research and Development (PERD) funded this study
文摘A workflow that helps identify potential production sweet spots in the Middle Bakken tight oil play is proposed based on analysis of large amounts of production data. The proposed approach is a multivariate statistical model that extracts relevant information from a training dataset of production wells to facilitate geological similarity comparison between economic and sub-economic production wells. The model is applied to the Middle Bakken tight oil play in southeastern Saskatchewan. Data screening for diagnostic geological indicators for sweet spots reveals that several geological factors indicative for conventional oil reservoirs seem to work for the Middle Bakken tight oil play as well. These factors include: a) the NE Torqunay-Rocanville Trend serving as a preferred regional migration path for connecting mature source rock in southern Williston Basin and the Middle Bakken tight reservoir in southeastern Saskatchewan; b) the oils in the Bakken tight reservoirs along the U.S. and Canada border are more likely from local matured Bakken source rocks; c) subtle structural components enhancing the convergence of dispersed hydrocarbons over a large area; d) top seal and lateral barrier improving preservation, thus favouring oil productivity; e) orientation of maximum horizontal stress coincident with the direction of the variogram spatial continuity in ultimate recoverable reserves, so the direction of horizontal well has a significant impact on the oil productivity.