This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber(BS)in literature.According to literature reviews,the strength of BS under different load modes is affected by a series o...This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber(BS)in literature.According to literature reviews,the strength of BS under different load modes is affected by a series of factors,such as the type of original bamboo,growth position,resin content,treatment method and density.Therefore,different production processes can be adopted according to different requirements,and bamboo scrimbers can also be classified accordingly.In addition,this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS,so that readers can have an overall understanding of the existing research and make more innovative and valuable research on this basis.This review provides and discusses the conclusive observations,the current research gaps and future research directions on the mechanical properties of BS.展开更多
In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of...In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.展开更多
In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique,a large quantities of experiments have been carried out.Based on t...In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique,a large quantities of experiments have been carried out.Based on the analysis of the test results,the following conclusions can be drawn.Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain.Brittle failure happened for all tensile tests.The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.The failure modes for bamboo scrimber specimens under compression parallel to grain could be divided into four.Only one main failure mode happened both for the bending specimens and the shear specimens.With the COV values of 28.64 and 25.72 respectively,the values for the strength and elastic modulus under tensile perpendicular to grain have the largest discreteness for bamboo scrimber.From the point of CHV values,the relationship among the mechanical parameters for bamboo scrimber were proposed based on the test results.Compared with other green building materials,bamboo scrimber manufactured based on a new technique has better mechanical performance and could be used in construction area.Three stress strain relationship models which are four-linear model,quadratic function model,and cubic function model were proposed for bamboo scrimber specimens manufactured based on a new technique.The latter two models gives better prediction for stress strain relationship in elastic plastic stage.展开更多
This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model w...This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam.展开更多
To further verify the feasibility of newly designed reinforced bamboo scrimber composite(RBSC)beams used in building construction,the bonding properties between steel bar and bamboo scrimber were investigated by anti-...To further verify the feasibility of newly designed reinforced bamboo scrimber composite(RBSC)beams used in building construction,the bonding properties between steel bar and bamboo scrimber were investigated by anti-pulling tests.Results indicated that the anti-pulling mechanical properties were significantly correlated to the diameter,thread form and buried depth of steel bar,forming density of bamboo scrimber as well as the heat treatment of bamboo bundle.There were two failure modes for anti-pulling tests:the tensile fracture and pulling out of steel bar.Both the ultimate load and average shear strength of anti-pulling specimen could be increased greatly with the ribbed bar,high forming density of bamboo scrimber and un-heated bamboo bundle.Furthermore,a theoretical calculation model of the bonding interface between steel bar and bamboo scrimber was developed.Based on the theoretical calculation model,the change laws of normal stress of bamboo scrimber,and shear stress of glue layer along the buried depth of steel bar were revealed.This study is beneficial for the safety application of RBSC beams in building construction.展开更多
The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of r...The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of rapidity,simplicity,good repeatability,and high precision.Bamboo scrimber has strong potential as a building material,and its elastic constant is an important index to measure its mechanical properties.To quickly,simply,non-destructively,and accurately detect the elastic constant of the bamboo scrimber,they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method.The static four-point bending method was used to verify the accuracy and reliability of the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber.The mechanism analysis and evaluation of the quality grade,homogeneity,and size effect of the bamboo scrimber whole board were carried out.The main results show that the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber are 12 GPa,1500 MPa,and 0.31,respectively,which meet the requirements of GB/T 40247-2021 for structural bamboo scrimber.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
Due to the continuously increasing demand for building materials across the world,it is necessary to use renewable materials in place of the existing nonrenewable materials in construction projects.Bamboo is a fast-gr...Due to the continuously increasing demand for building materials across the world,it is necessary to use renewable materials in place of the existing nonrenewable materials in construction projects.Bamboo is a fast-growing flowering plant that may be used as a renewable material in construction.The use of bamboo in the construction of buildings can improve its long-term carbon fixation capacity and economic benefits.Although bamboo has the advantages of superior performance,low carbon content,high energy-saving and emission-reducing capacity,bamboo is an anisotropic material,which has many factors affecting its material performance,large variability of material performance,lack of systematic research,and the use of bamboo as the main building material is not always limited.This paper systematically summarizes the research status of bamboo as a building material from the aspects of bamboo composition,gradation,material properties,bamboo building components,connection nodes,and use of artificial boards.On this basis,some constructive suggestions are put forward for the further study of bamboo in the field of architecture.展开更多
The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bambo...The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bamboo scrimber,bamboo plywood and SPF(Spruce-pine-fir)dimension lumber)during four-point loading tests were compared.The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis.Results showed that the bending strength of bamboo scrimber was 3.6 times that of bam-boo plywood and 2.7 times that of SPF dimension lumber,respectively.Due to the high strength and toughness of bamboo,the AE signals of the two bamboo products were more abundant than those of SPF dimension lumber.However,the AE evolution trend of the three materials was similar,which all experienced three stages,including gentle period,steady period and steep period,and the area of rupture precursor characteristics could be recognized before the specimen destroyed.Due to the bottom layer was first tensile failure,the main structure of bamboo plywood was destroyed after the stress redistribution.The rupture precursor characteristics could be observed before each peak.Findings put in evidence a good correlation between AE clusters of two bamboo products,while the amplitude and energy of wood signals were lower than those of bamboo.The amplitude and energy from the propagation and aggregation of cracks were greater than those related to micro-cracks initiation.展开更多
Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber.Parallel strand bamboo is one important p...Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber.Parallel strand bamboo is one important part of engineered bamboo for its excellent durable performance compared to the laminated veneer bamboo.The required curing temperature in hot-pressing process is usually higher than 120°C to reduce the content of nutri-tional ingredients and hemy cellulose,and to avoid the decay from the environment and insects.Nonetheless,the appearance of engineered bamboo gets darker with the increase of temperature during the hot-pressing process.In order to minimize the color deepening while maintaining the durability,a high-durable parallel strand bamboo(HPSB)with relative high hot-pressing temperature(140°C)was produced and tested.The present study inves-tigates the mechanical performance through tension,compression,shear and bending tests.The experimental behavior of the specimens was identified,including the failure mode and load-displacement relationship.It was demonstrated that the HPSB material had better mechanical performance parallel to grain,making it as a considerable structural material.The average elastic modulus parallel to grain was 14.1 GPa,and the tensile and compressive strengths were 120.7 MPa and 121.0 MPa,respectively.The tension perpendicular to grain should be avoided in the practical application due to the lower strength and elastic modulus.Two stress-strain relationships of tension and compression parallel to grain,including three-linear and quadratic function models,were proposed and compared with the experimental results.The three-linear model was then applied to the finite element model.The finite element analysis using ANSYS software was conducted to validate the feasibility of the constitutive relationship.The quadratic function model showed better agreement with the experimental results,but the three-linear relationship was also precise enough to analyze the bending tests of HPSB material,whereas being less accurate to describe the elastic-plastic compression behavior.展开更多
基金the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)+2 种基金333 Talent High-Level Project of Jiangsu ProvinceQinglan Project of Jiangsu Higher Education Institutionsand the Ministry of Housing and Urban-Rural Science Project of Jiangsu Province under Grant(No.2021ZD10).
文摘This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber(BS)in literature.According to literature reviews,the strength of BS under different load modes is affected by a series of factors,such as the type of original bamboo,growth position,resin content,treatment method and density.Therefore,different production processes can be adopted according to different requirements,and bamboo scrimbers can also be classified accordingly.In addition,this review summarizes the changes in different factors considered by scholars in the research on the mechanical properties of BS,so that readers can have an overall understanding of the existing research and make more innovative and valuable research on this basis.This review provides and discusses the conclusive observations,the current research gaps and future research directions on the mechanical properties of BS.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping City(N2021Z007)the Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University(LYGC202119).
文摘In this paper,a new type of bamboo scrimber column embedded with steel bars(rebars)was proposed,and the compression performance was improved by pre-embedding rebars during the preparation of the columns.The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens.The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns.When the slenderness ratio increased from 19.63 to 51.96,the failure mode changed from strength failure to buckling failure,and the maximum bearing capacity decreased by 43.03%.The axial compression performance of the reinforced bamboo scrimber columns did not significantly improve at a slenderness ratio of 19.63,but the opposite was true at slenderness ratios of 36.95 and 51.96.When the reinforcement ratio increased from 0%to 4.52%,the bearing capacity of those with a slenderness ratio of 51.96 increased by up to 16.99%,and the stiffness and ductility were also improved.Finally,based on existing specifications,two modification parameters,the overall elastic modulus Ec and the combined strength fcc,were introduced to establish a calculation method for the bearing capacity of the reinforced bamboo scrimber columns.The calculation results were compared with the test results,and the results showed that the proposed calculation models can more accurately predict the bearing capacity.
基金supported by the National Natural Science Foundation of China(51878354)the Natural Science Foundation of Jiang-su Province(No.BK20181402)+1 种基金Six Peak High-level Talents Project of Jiangsu Provincea Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘In order to investigate the basic mechanical properties and stress strain relationship model for bamboo scrimber manufactured based on a new technique,a large quantities of experiments have been carried out.Based on the analysis of the test results,the following conclusions can be drawn.Two main typical failure modes were classified for bamboo scrimber specimens both under tension parallel to grain and tension perpendicular to grain.Brittle failure happened for all tensile tests.The slope values for the elastic stages have bigger discreteness compared with those for the specimens under tensile parallel to grain.The failure modes for bamboo scrimber specimens under compression parallel to grain could be divided into four.Only one main failure mode happened both for the bending specimens and the shear specimens.With the COV values of 28.64 and 25.72 respectively,the values for the strength and elastic modulus under tensile perpendicular to grain have the largest discreteness for bamboo scrimber.From the point of CHV values,the relationship among the mechanical parameters for bamboo scrimber were proposed based on the test results.Compared with other green building materials,bamboo scrimber manufactured based on a new technique has better mechanical performance and could be used in construction area.Three stress strain relationship models which are four-linear model,quadratic function model,and cubic function model were proposed for bamboo scrimber specimens manufactured based on a new technique.The latter two models gives better prediction for stress strain relationship in elastic plastic stage.
基金by the Natural Science Foundation of China(Grant No U1737112)Chinese Postdoctoral Station of Yihua Life Science and Technology Co.,Ltd.(No.201141).
文摘This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam.
基金supported by the National Key Research and Development Program of China(2016YFC0701505).
文摘To further verify the feasibility of newly designed reinforced bamboo scrimber composite(RBSC)beams used in building construction,the bonding properties between steel bar and bamboo scrimber were investigated by anti-pulling tests.Results indicated that the anti-pulling mechanical properties were significantly correlated to the diameter,thread form and buried depth of steel bar,forming density of bamboo scrimber as well as the heat treatment of bamboo bundle.There were two failure modes for anti-pulling tests:the tensile fracture and pulling out of steel bar.Both the ultimate load and average shear strength of anti-pulling specimen could be increased greatly with the ribbed bar,high forming density of bamboo scrimber and un-heated bamboo bundle.Furthermore,a theoretical calculation model of the bonding interface between steel bar and bamboo scrimber was developed.Based on the theoretical calculation model,the change laws of normal stress of bamboo scrimber,and shear stress of glue layer along the buried depth of steel bar were revealed.This study is beneficial for the safety application of RBSC beams in building construction.
文摘The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of rapidity,simplicity,good repeatability,and high precision.Bamboo scrimber has strong potential as a building material,and its elastic constant is an important index to measure its mechanical properties.To quickly,simply,non-destructively,and accurately detect the elastic constant of the bamboo scrimber,they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method.The static four-point bending method was used to verify the accuracy and reliability of the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber.The mechanism analysis and evaluation of the quality grade,homogeneity,and size effect of the bamboo scrimber whole board were carried out.The main results show that the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber are 12 GPa,1500 MPa,and 0.31,respectively,which meet the requirements of GB/T 40247-2021 for structural bamboo scrimber.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金We thank Jiangsu Province High-level Talent Selection Training(JNHB-127)the National Key R&D Program of China(2017YFC0703501)+4 种基金the National Natural Science Foundation of China(51878590)Jiangsu Provincial Department of Housing and construction(2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)the Yangzhou Science and Technology Project(YZ2019047)College Research Project(2019xjzk014)for their funding.
文摘Due to the continuously increasing demand for building materials across the world,it is necessary to use renewable materials in place of the existing nonrenewable materials in construction projects.Bamboo is a fast-growing flowering plant that may be used as a renewable material in construction.The use of bamboo in the construction of buildings can improve its long-term carbon fixation capacity and economic benefits.Although bamboo has the advantages of superior performance,low carbon content,high energy-saving and emission-reducing capacity,bamboo is an anisotropic material,which has many factors affecting its material performance,large variability of material performance,lack of systematic research,and the use of bamboo as the main building material is not always limited.This paper systematically summarizes the research status of bamboo as a building material from the aspects of bamboo composition,gradation,material properties,bamboo building components,connection nodes,and use of artificial boards.On this basis,some constructive suggestions are put forward for the further study of bamboo in the field of architecture.
基金This paper was supported in part by Project funded by the National Natural Science Foundation of China(Grant Nos.32071700 and 31570559).
文摘The acoustic emission(AE)technique can perform non-destructive monitoring of the internal damage development of bamboo and wood materials.In this experiment,the mechanical properties of different bamboo and wood(bamboo scrimber,bamboo plywood and SPF(Spruce-pine-fir)dimension lumber)during four-point loading tests were compared.The AE activities caused by loadings were investigated through the single parameter analysis and K-means cluster analysis.Results showed that the bending strength of bamboo scrimber was 3.6 times that of bam-boo plywood and 2.7 times that of SPF dimension lumber,respectively.Due to the high strength and toughness of bamboo,the AE signals of the two bamboo products were more abundant than those of SPF dimension lumber.However,the AE evolution trend of the three materials was similar,which all experienced three stages,including gentle period,steady period and steep period,and the area of rupture precursor characteristics could be recognized before the specimen destroyed.Due to the bottom layer was first tensile failure,the main structure of bamboo plywood was destroyed after the stress redistribution.The rupture precursor characteristics could be observed before each peak.Findings put in evidence a good correlation between AE clusters of two bamboo products,while the amplitude and energy of wood signals were lower than those of bamboo.The amplitude and energy from the propagation and aggregation of cracks were greater than those related to micro-cracks initiation.
基金The authors acknowledge funding supported by the Fundamental Research Funds for the Central Universities of China(No.BLX201706)supported by Major Science and Technology Program for Water Pollution Control and Treatment(No.2017ZX07102-001)supported by the National Natural Science Foundation of China(Nos.51908038 and 31770602)。
文摘Engineered bamboo has recently received lots of attention of civil engineers and professional researchers due to its better mechanical performance than that of softwood timber.Parallel strand bamboo is one important part of engineered bamboo for its excellent durable performance compared to the laminated veneer bamboo.The required curing temperature in hot-pressing process is usually higher than 120°C to reduce the content of nutri-tional ingredients and hemy cellulose,and to avoid the decay from the environment and insects.Nonetheless,the appearance of engineered bamboo gets darker with the increase of temperature during the hot-pressing process.In order to minimize the color deepening while maintaining the durability,a high-durable parallel strand bamboo(HPSB)with relative high hot-pressing temperature(140°C)was produced and tested.The present study inves-tigates the mechanical performance through tension,compression,shear and bending tests.The experimental behavior of the specimens was identified,including the failure mode and load-displacement relationship.It was demonstrated that the HPSB material had better mechanical performance parallel to grain,making it as a considerable structural material.The average elastic modulus parallel to grain was 14.1 GPa,and the tensile and compressive strengths were 120.7 MPa and 121.0 MPa,respectively.The tension perpendicular to grain should be avoided in the practical application due to the lower strength and elastic modulus.Two stress-strain relationships of tension and compression parallel to grain,including three-linear and quadratic function models,were proposed and compared with the experimental results.The three-linear model was then applied to the finite element model.The finite element analysis using ANSYS software was conducted to validate the feasibility of the constitutive relationship.The quadratic function model showed better agreement with the experimental results,but the three-linear relationship was also precise enough to analyze the bending tests of HPSB material,whereas being less accurate to describe the elastic-plastic compression behavior.