In this paper,for 1<p<∞,the authors show that the coarse l^(p)-Novikov conjecture holds for metric spaces with bounded geometry which are coarsely embeddable into a Banach space with Kasparov-Yu’s Property(H).
Let X be a complex quasi Banach space and Φ:[0,∞)→[0,∞) an increasing convex function with Φ(0)=0 , lim t→∞Φ(t)=∞ and Φ∈Δ 2 . Then L * Φ(X) is a quasi Banach space with contin...Let X be a complex quasi Banach space and Φ:[0,∞)→[0,∞) an increasing convex function with Φ(0)=0 , lim t→∞Φ(t)=∞ and Φ∈Δ 2 . Then L * Φ(X) is a quasi Banach space with continuous quasi norm and L * Φ(X) has the ARNP if and only if X does.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12171156)the Science and Technology Commission of Shanghai Municipality(No.22DZ2229014)。
文摘In this paper,for 1<p<∞,the authors show that the coarse l^(p)-Novikov conjecture holds for metric spaces with bounded geometry which are coarsely embeddable into a Banach space with Kasparov-Yu’s Property(H).
文摘Let X be a complex quasi Banach space and Φ:[0,∞)→[0,∞) an increasing convex function with Φ(0)=0 , lim t→∞Φ(t)=∞ and Φ∈Δ 2 . Then L * Φ(X) is a quasi Banach space with continuous quasi norm and L * Φ(X) has the ARNP if and only if X does.