In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Su...In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.展开更多
Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 fo...Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 for close-to-convex functions.Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.展开更多
Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed poin...Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed point property for nonexpansive mappings. Strong convergence theorems for approximation of a fixed point of Lipschitz pseudo-contractive map- pings which is also a unique solution to variational inequality problem involving φ-strongly pseudo-contractive mappings are proved. The results presented in this article can be applied to the study of fixed points of nonexpansive mappings, variational inequality problems, con- vex optimization problems, and split feasibility problems. Our result extends many recent important results.展开更多
The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this pa...The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces, and apply this extension to the study of nonlinear complementarity problems in Banach spaces.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Und...The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.展开更多
In this paper, by the definition of spirallike mapping of type β and order α ,we discuss that the generalized Roper-Suffridge extension operator preserves spirallikeness of type β and order α in complex Banach spa...In this paper, by the definition of spirallike mapping of type β and order α ,we discuss that the generalized Roper-Suffridge extension operator preserves spirallikeness of type β and order α in complex Banach spaces.展开更多
In this paper, by the definition of almost spirallike mappings of type β and order α and the geometric property of the spirallike mapping of type β, we prove that the generalized Roper-Suffridge extension operator ...In this paper, by the definition of almost spirallike mappings of type β and order α and the geometric property of the spirallike mapping of type β, we prove that the generalized Roper-Suffridge extension operator preserves almost spirallikeness of type β and order α in complex Banach spaces. Key words:展开更多
In this paper,we introduce a general hybrid iterative method to find an infinite family of strict pseudo-contractions in a q-uniformly smooth and strictly convex Banach space.Moreover,we show that the sequence defined...In this paper,we introduce a general hybrid iterative method to find an infinite family of strict pseudo-contractions in a q-uniformly smooth and strictly convex Banach space.Moreover,we show that the sequence defined by the iterative method converges strongly to a common element of the set of fixed points,which is the unique solution of the variational inequality<(λφ−νF)z,jq(z−z)>≤0,for z∈⋂_(i=1)^(∞)Γ(S_(i)).The results introduced in our work extend to some corresponding theorems.展开更多
Impulsive neutral differential inclusions play an important role in characterizing many social, physical and engineering problems, and the existence of solutions for the initial value problem in Banach spaces has been...Impulsive neutral differential inclusions play an important role in characterizing many social, physical and engineering problems, and the existence of solutions for the initial value problem in Banach spaces has been extensively studied. However, in most cases, the nonlinear term on the right-hand side of differential inclusions has to satisfy the compact or continuous assumptions. The object of this paper is to study the existence of solutions to the initial value problems of the first and second order impulsive neutral functional differential inclusions in Banach spaces under some weaker conditions, where the nonlinear term on the right-hand side does not necessarily satisfy the compact and continuous assumptions. Based on a fixed point theorem for discontinuous multivalued increasing operators, the results are obtained by means of the partial ordering method and measure of noncompactness.展开更多
A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator tech...A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-η-monotone operators, a new iterative algorithm for finding approximate solutions to SSMQVLI is proposed. It is shown that the iterative sequences generated by the algorithm converge strongly to the exact solution of SSMQVLI under appropriate assumptions. These obtained new results have extended and improved previous results.展开更多
Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satisfies an integral convergence condition or weak stability on a basis,then t...Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satisfies an integral convergence condition or weak stability on a basis,then there exists a surjective linear isometry U:X→Y such that∥f(x)−Ux∥=o(∥x∥)as∥x∥→∞.This is a generalization about the result of Lindenstrauss and Szankowski on the same finite dimensional Banach spaces without the assumption of surjectivity.As a consequence,we also obtain a stability result forε-isometries which was established by Dilworth.展开更多
In this paper, the initial value problems of second order ordinary differential equations in Banach spaces are discussed. By using the monotone iterative technique, some existence and uniqueness theorems for solutions...In this paper, the initial value problems of second order ordinary differential equations in Banach spaces are discussed. By using the monotone iterative technique, some existence and uniqueness theorems for solutions are obtained.展开更多
Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical meth...Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.展开更多
In this paper,we define new measures called respectively graph measure of noncompactness and graph measure of weak noncompactness.Moreover,we apply the obtained results to discuss the incidence of some perturbation re...In this paper,we define new measures called respectively graph measure of noncompactness and graph measure of weak noncompactness.Moreover,we apply the obtained results to discuss the incidence of some perturbation results realized in [2] on the behavior of essential spectra of such closed densely defined linear operators on Banach spaces.These results are exploited to investigate the essential spectra of a multidimensional neutron transport operator on L1 spaces.展开更多
By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach s...By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach spaces.展开更多
In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered B...In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.展开更多
We provide convergence results and error estimates for Newton-like methods in generalized Banach spaces.The idea of a generalized norm is used whichis defined to be a map from a linear space into a partially ordered B...We provide convergence results and error estimates for Newton-like methods in generalized Banach spaces.The idea of a generalized norm is used whichis defined to be a map from a linear space into a partially ordered Banach space.Convergence results and error estimates are improved compared with the real norm theory.展开更多
The Super-Halley method is one of the best known third-order iteration for solving nonlnear equations. A Newton-like method which is an approximation of this method is studied. Our approach yields a fourth R-order ite...The Super-Halley method is one of the best known third-order iteration for solving nonlnear equations. A Newton-like method which is an approximation of this method is studied. Our approach yields a fourth R-order iterative process which is more efficient than its classical predecessor. We establish a Newton-Kantorovich-type convergence theorem using a new system of recurrence relations, and give an explicit expression for the a priori error bound of the iteration.展开更多
We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis ...We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis operators on these spaces and establish the continuity of their composition. Also, we prove a general result to characterize infinite trees in the above Banach spaces of antifunctionals. This paper paves the way for the study of corresponding problems associated with some other types of Banach spaces on locally compact abelian groups including modulation spaces.展开更多
文摘In this paper, we characterize lower semi-continuous pseudo-convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the pseudo-monotonicity of its Clarke-Rockafellar Sub-differential. We extend the results on the characterizations of non-smooth convex functions f : X → R ∪ {+ ∞} on convex subset of real Banach spaces K ⊂ X with respect to the monotonicity of its sub-differentials to the lower semi-continuous pseudo-convex functions on real Banach spaces.
基金Supported by the NNSF of China(11971165)the Natural Science Foundation of Zhejiang Province(LY21A010003)。
文摘Let C be the familiar class of normalized close-to-convex functions in the unit disk.In[17],Koepf demonstrated that,as to a function■in the class C,■By applying this inequality,it can be proven that‖a3|-|a2‖≤1 for close-to-convex functions.Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.
文摘Let K be a nonempty, closed and convex subset of a real reflexive Banach space E which has a uniformly Gateaux differentiable norm. Assume that every nonempty closed con- vex and bounded subset of K has the fixed point property for nonexpansive mappings. Strong convergence theorems for approximation of a fixed point of Lipschitz pseudo-contractive map- pings which is also a unique solution to variational inequality problem involving φ-strongly pseudo-contractive mappings are proved. The results presented in this article can be applied to the study of fixed points of nonexpansive mappings, variational inequality problems, con- vex optimization problems, and split feasibility problems. Our result extends many recent important results.
文摘The notion of “exceptional family of elements (EFE)” plays a very important role in solving complementarity prob- lems. It has been applied in finite dimensional spaces and Hilbert spaces by many authors. In this paper, by using the generalized projection defined by Alber, we extend this notion from Hilbert spaces to uniformly smooth and uniformly convex Banach spaces, and apply this extension to the study of nonlinear complementarity problems in Banach spaces.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
基金supported by the National Natural Science Foundation of China(11361070)the Natural Science Foundation of China Medical University,Taiwan
文摘The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.
文摘In this paper, by the definition of spirallike mapping of type β and order α ,we discuss that the generalized Roper-Suffridge extension operator preserves spirallikeness of type β and order α in complex Banach spaces.
文摘In this paper, by the definition of almost spirallike mappings of type β and order α and the geometric property of the spirallike mapping of type β, we prove that the generalized Roper-Suffridge extension operator preserves almost spirallikeness of type β and order α in complex Banach spaces. Key words:
基金supported by the National Natural Science Foundation of China(12001416,11771347 and 12031003)the Natural Science Foundations of Shaanxi Province(2021JQ-678).
文摘In this paper,we introduce a general hybrid iterative method to find an infinite family of strict pseudo-contractions in a q-uniformly smooth and strictly convex Banach space.Moreover,we show that the sequence defined by the iterative method converges strongly to a common element of the set of fixed points,which is the unique solution of the variational inequality<(λφ−νF)z,jq(z−z)>≤0,for z∈⋂_(i=1)^(∞)Γ(S_(i)).The results introduced in our work extend to some corresponding theorems.
基金Supported by National Natural Science Foundation of China (No. 10401006)Hebei Province (No. 07M002)
文摘Impulsive neutral differential inclusions play an important role in characterizing many social, physical and engineering problems, and the existence of solutions for the initial value problem in Banach spaces has been extensively studied. However, in most cases, the nonlinear term on the right-hand side of differential inclusions has to satisfy the compact or continuous assumptions. The object of this paper is to study the existence of solutions to the initial value problems of the first and second order impulsive neutral functional differential inclusions in Banach spaces under some weaker conditions, where the nonlinear term on the right-hand side does not necessarily satisfy the compact and continuous assumptions. Based on a fixed point theorem for discontinuous multivalued increasing operators, the results are obtained by means of the partial ordering method and measure of noncompactness.
基金Project supported by the Natural Science Foundation of Education Department of Sichuan Province ofChina (No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-η-monotone operators, a new iterative algorithm for finding approximate solutions to SSMQVLI is proposed. It is shown that the iterative sequences generated by the algorithm converge strongly to the exact solution of SSMQVLI under appropriate assumptions. These obtained new results have extended and improved previous results.
基金Supported by National Natural Science Foundation of China(11731010 and 12071388)。
文摘Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f:X→Y satisfies an integral convergence condition or weak stability on a basis,then there exists a surjective linear isometry U:X→Y such that∥f(x)−Ux∥=o(∥x∥)as∥x∥→∞.This is a generalization about the result of Lindenstrauss and Szankowski on the same finite dimensional Banach spaces without the assumption of surjectivity.As a consequence,we also obtain a stability result forε-isometries which was established by Dilworth.
文摘In this paper, the initial value problems of second order ordinary differential equations in Banach spaces are discussed. By using the monotone iterative technique, some existence and uniqueness theorems for solutions are obtained.
文摘Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and suppose: T: K --> K is a continuous Phi-strongly pseudocontractive operator with a bounded range. Using a new analytical method, under general cases, the Ishikawa iterative process {x(n)} converges strongly to the unique fixed point x* of the operator T were proved. The paper generalizes and extends a lot of recent corresponding results.
文摘In this paper,we define new measures called respectively graph measure of noncompactness and graph measure of weak noncompactness.Moreover,we apply the obtained results to discuss the incidence of some perturbation results realized in [2] on the behavior of essential spectra of such closed densely defined linear operators on Banach spaces.These results are exploited to investigate the essential spectra of a multidimensional neutron transport operator on L1 spaces.
基金Supported by the Research Project of Bozhou Teacher’s College(BSKY0805)Supported by the Natural Science Research Project of Anhui Province(KJ2009B093)
文摘By applying the fixed-point theorem of strict-set-contraction,this paper establishes the existence of one solution or one positive solution to the generalized Sturm-Liouville m-point boundary value problem in Banach spaces.
基金Funded by the Natural Science Foundation of China (No. 10171070)
文摘In this paper, a new concept of double coupled fixed point for multi-valued mixed increasing operators is given and some new double coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are also given. These results extend and generalize some results of Huang and Fang.
文摘We provide convergence results and error estimates for Newton-like methods in generalized Banach spaces.The idea of a generalized norm is used whichis defined to be a map from a linear space into a partially ordered Banach space.Convergence results and error estimates are improved compared with the real norm theory.
文摘The Super-Halley method is one of the best known third-order iteration for solving nonlnear equations. A Newton-like method which is an approximation of this method is studied. Our approach yields a fourth R-order iterative process which is more efficient than its classical predecessor. We establish a Newton-Kantorovich-type convergence theorem using a new system of recurrence relations, and give an explicit expression for the a priori error bound of the iteration.
基金"This work is supported by the financial grant of DST/MS/150 2K".
文摘We extend the concept of frame multiresolution analysis to a locally compact abelian group and use it to define certain weighted Banach spaces and the spaces of their antifunctionals. We define analysis and synthesis operators on these spaces and establish the continuity of their composition. Also, we prove a general result to characterize infinite trees in the above Banach spaces of antifunctionals. This paper paves the way for the study of corresponding problems associated with some other types of Banach spaces on locally compact abelian groups including modulation spaces.