Properties of the four rotation bands, ^157Er(1,2) and ^15SEr(1,2), at ultrahigh spin are investigated within the supersymmetry scheme including many-body interactions and possessing the SO(5) (or SU(5)) sym...Properties of the four rotation bands, ^157Er(1,2) and ^15SEr(1,2), at ultrahigh spin are investigated within the supersymmetry scheme including many-body interactions and possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the 7-ray energies and the dynamical moments of inertia in the rotation bands in ^157 Er and ^158 Er at ultrahigh spin are obtained. We theoretically predict that the competition between the anti-pairing and pairing effects may exist in ^157 Er(1,2) and ^158Et(2) bands states. In ^158Er(1) band state, the favourepairing effects may exist and the SO(5) (or SU(5)) symmetry play a dominant role. There may be sphere coexisting with headecupole deformed in ^158Et(1) rotation band state.展开更多
The interacting boson model for anomalous rotational bands is proposed. In the rotational SU(3) limit,an asymptotic limit is discussed. Within the framework of the model several analytic relations for energies and ele...The interacting boson model for anomalous rotational bands is proposed. In the rotational SU(3) limit,an asymptotic limit is discussed. Within the framework of the model several analytic relations for energies and electro-magnetic transition rates are derived.展开更多
The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the an...The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.展开更多
We investigate the ground-state rotational bands of nuclei with Z 〉 100 using cluster model proposed by Buck et al. [Phys. Rev. Left. 94 (2005) 202501]. The core-duster decomposition of each nucleus is determined b...We investigate the ground-state rotational bands of nuclei with Z 〉 100 using cluster model proposed by Buck et al. [Phys. Rev. Left. 94 (2005) 202501]. The core-duster decomposition of each nucleus is determined by the corresponding electric quadrupole transition strength B(E2 : 2^+ → 0^+). The theoretical spectra of fermium and nobelium isotopes are compared with available experimental data. Good agreement between model and data is obtained.展开更多
In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The fa...In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.展开更多
The configuration-dependent cranked Nilsson-Strutinsky approach was used to investigate the rotational structures in 128Pr and signature splittings of some observed bands could be well described quantitatively at high...The configuration-dependent cranked Nilsson-Strutinsky approach was used to investigate the rotational structures in 128Pr and signature splittings of some observed bands could be well described quantitatively at high spin. Its modified model was used to calculate special configurations in order to distinguish the N=4 d3/2s1/2 and g7/2d5/2 orbitals. All observed bands were compared with the calculated configuration assigned to the band and the agreement between experiment and theory is remarkable.展开更多
One of the cluster behaviors observed in light nuclei such as20 Ne and44 Ti is the presence of an alpha particle rotating around a double magic number core. In this work, a theoretical method is used for investigation...One of the cluster behaviors observed in light nuclei such as20 Ne and44 Ti is the presence of an alpha particle rotating around a double magic number core. In this work, a theoretical method is used for investigation of rotational spectra of two-particle cluster states. To this end, Deng-Fan potential in addition to Hellman potential is used as the core and cluster potential. Next, given the Wildermuth condition, and proper quantum numbers describing the relative motion of the alpha particle and core, the rotational levels of20 Ne and44 Ti isotopes are calculated. Our studies show that the results are in good agreement with the available data.展开更多
The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas, including...The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas, including Bohr-Mottelson's I(I+ 1)-expansion, Harris' ω^2-expansion, ab and abc formulas. It is shown that the simple 2-parameter ab formula is much better than the widely used 2-parameter Bohr-Mottelson's AB formula and Harris' αβ formula. The available data of the rotational spectra of both ground-state band in even-even nuclei and one-quasiparticle band in odd-A nuclei can be conveniently and rather accurately reproduced by ab formula and abc formula. The moment of inertia and the variation with rotational frequency of angular momentum can be satisfactorily reproduced by ab and abc formulas.展开更多
High spin states in the odd-odd nucleus 124Cs have been investigated through the fusion-evaporation reaction 116Sn(11B, 3n)l24 Cs with a beam energy of 45 MeV. A new rotational band is established and assigned as th...High spin states in the odd-odd nucleus 124Cs have been investigated through the fusion-evaporation reaction 116Sn(11B, 3n)l24 Cs with a beam energy of 45 MeV. A new rotational band is established and assigned as the high-k configuration of πg9/2140419/2+ ⊙vh 11/2[523]7/2-. Some structures linking to this band have also been observed. According to the results of the excitation energy systematics, the lowest level of this band is assigned as 9-, and the 8- isomer bandhead has not been observed. Another isomer with a half life of 6.3 s has also been observed with its new decay paths established, Its excitation energy is raised by 79 keV, but its Iπ is not changed.展开更多
The high spin states of 106pd have been populated through the 100Mo(11B, lp4n)106Pd reaction using a beam energy of 60 MeV provided by the Beijing HI-13 tandem accel- erator at China Institute of Atomic Energy. By a...The high spin states of 106pd have been populated through the 100Mo(11B, lp4n)106Pd reaction using a beam energy of 60 MeV provided by the Beijing HI-13 tandem accel- erator at China Institute of Atomic Energy. By analyzing the V-3' coincidence relation and DCO raios of transitions, 3 rotational bands with 13 new states and 22 new 7 transitions belonging to 106pd were constructed. Bands 2 and 3 with negative parity were supposed to build on the vh1l/297/2 and vh11/2ds/2 configuration, respectively.展开更多
Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>...Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>-boson) degree of freedom on the positive-parity states of even-even nuclei in SU(3) limit are discussed. It is shown that configurations of an even number of many p- and f-bosons can not only be incorporated into the usual low-lying collective rotational bands, such as the ground state band, β- and γ-vibrational bands, but also naturally form the rotational bands, etc. These results are similar to that of U<SUB>sdg</SUB>(15)-IBM and in good agreement with the experimental data of the nucleus. Besides, several intraband E2 transition probabilities are given, which are consistent with that of U<SUB>sd</SUB>(6)-IBM.展开更多
The engraving process of a projectile rotating band is one of the most basic research aspects in interior ballistics,which has not been thoroughly understood thus far.An understanding of this process is of great impor...The engraving process of a projectile rotating band is one of the most basic research aspects in interior ballistics,which has not been thoroughly understood thus far.An understanding of this process is of great importance from the viewpoints of optimal design,manufacturing,use,and maintenance of gun and projectile.In this paper,the interaction of copper and nylon rotating bands with a CrNiMo gun barrel during engraving was studied under quasi‐static and dynamic loading conditions.The quasi‐static engraving tests were performed on a CSS‐88500 electronic universal testing machine(EUTM)and a special gas‐gun‐based test rig was designed for dynamic impact engraving of the rotating bands.The mechanical behaviors of copper and nylon were investigated under strain rates of 10^(−3) s^(−1) and 2×10^(3) s^(−1) using an MTS 810 and a split Hopkinson pressure bar(SHPB),respectively.Morphologies of the worn surfaces and cross‐sectional microstructures were observed with scanning electron microscope(SEM)and optical microscope(OM).It was found that large deformation and severe friction occur during engraving.The surface layer is condensed and correlated with a hardness gradient along the depth from the top worn surface.The structure of the rotating band and gun bore,band material,and loading rate have great effects on band engraving.The flow stress‐strain of the copper strongly depends on the applied strain rate.It is suggested that strain rate and temperature play significant roles in the deformation mechanism of rotating bands.展开更多
Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd-Z nucleus 255Lr are studied by the cranked shell model (CSM) w...Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd-Z nucleus 255Lr are studied by the cranked shell model (CSM) with the paring correlations treated by the particle-number-conserving (PNC) method. This is the first time the detailed theoretical investigations are performed on these rotational bands. Both experimental kinematic and dynamic moments of inertia (f^(1) and ,f^(2) versus rotational frequency are reproduced quite well by the PNC-CSM calculations. By comparing the theoretical kinematic moment of inertia f(1) with the experimental ones extracted from different spin assignments, the spin 17/2- →13/2- is assigned to the lowest-lying 196.6(5) keV transition of the 1/2- [521 ] band, and 15/2→11/2- to the 189(1) keV transition of the 7/2- [514] band, respectively. The proton N = 7 major shell is included in the calculations. The intruder of the high-j low→lj15/2 (1/2-[770]) orbital at the high spin leads to band-crossings at hω = 0.20 (hω~=0.25) MeV for the 7/2-[514]ω= -1/2 (ω= +1/2) band, and at hω=0.175 MeV for the 1/2- [521 ] ω= - 1/2 band, respectively. Further investigations show that the band-crossing frequencies are quadrupole deformation dependent.展开更多
The multi-particle states and rotational properties of the two-particle bands in 254No are investigated by the cranked shell model with pairing correlations treated by the particle number conserving method. The rotati...The multi-particle states and rotational properties of the two-particle bands in 254No are investigated by the cranked shell model with pairing correlations treated by the particle number conserving method. The rotational bands on top of the two-particle Kπ= 3+, 8- and 10+ states and the pairing reduction are studied theoretically in 254No for the first time. The experimental excitation energies and moments of inertia of the multi-particle states are reproduced well by the calculations. Better agreement with the data is achieved by including the high-order deformation ε6,J(1) in these two-particle bands compared with the ground state band is attributed to the pairing reduction due to the Pauli blocking effect.展开更多
Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 17...Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 171 Tm, we perform projected shell model(PSM) calculations to investigate structure of the ground band and other bands based on isomeric states. In addi- tion to the usual quadrupole-quadrupole force in the Hamiltonian, we employ the hexadecapole-hexadecapole(HH) interac- tion, in a self-consistent way with the hexadecapole deformation of the deformed basis. It is found that the known experi- mental data can be well described by the PSM calculation. The effect of the HH force on the quasiparticle isomeric states is discussed.展开更多
A new level scheme of 112In have been established up to 6.8 MeV in excitation energy and to a tentative spin of (21+) through the reaction 110Pd(7Li,5n)112In at a beam energy of 50 MeV. In-beam measurements involving ...A new level scheme of 112In have been established up to 6.8 MeV in excitation energy and to a tentative spin of (21+) through the reaction 110Pd(7Li,5n)112In at a beam energy of 50 MeV. In-beam measurements involving γ-γ coincidences and directional correlation of oriented states were performed. M1 bands consisting of I =1 dipole transitions have been observed. Possible quasiparticle configurations suggest that these bands are similar to the shears bands observed in Pb nuclei.展开更多
A variable moment of inertia(VMI)inspired interacting boson model(IBM),which includes many-body interactions and a perturbation possessing(5)(or(5))symmetry,is used to investigate the rotational bands of the mass regi...A variable moment of inertia(VMI)inspired interacting boson model(IBM),which includes many-body interactions and a perturbation possessing(5)(or(5))symmetry,is used to investigate the rotational bands of the mass region.A novel modification is introduced,extending the Arima coefficient to the third order.This study is dedicated to the quantitative analysis of evolving trends in intrabandγ-transition energy as well as the kinematic and dynamic moments of inertia(MoIs)within the rotational bands of ^(244)Pu and ^(248)Cm.The computed outcomes exhibit an exceptional degree of agreement with experimental observations across various conditions.The significance of including a higher-order Arima coefficient is further examined by contrasting it with the previously proposed model.The calculated results demonstrate the significance of both the anti-pairing and pairing effects in the evolution of the dynamic MoI.Additionally,these insights reveal the importance of a newly introduced parameter in accurately depicting complex nuclear behaviors,such as back-bending,up-bending,and downturn in the MoI.展开更多
基金National Natural Science Foundation of China under Grant No.10475026the Natural Science Foundation of Zhejiang Province under Grant No.KY607518
文摘Properties of the four rotation bands, ^157Er(1,2) and ^15SEr(1,2), at ultrahigh spin are investigated within the supersymmetry scheme including many-body interactions and possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the 7-ray energies and the dynamical moments of inertia in the rotation bands in ^157 Er and ^158 Er at ultrahigh spin are obtained. We theoretically predict that the competition between the anti-pairing and pairing effects may exist in ^157 Er(1,2) and ^158Et(2) bands states. In ^158Er(1) band state, the favourepairing effects may exist and the SO(5) (or SU(5)) symmetry play a dominant role. There may be sphere coexisting with headecupole deformed in ^158Et(1) rotation band state.
文摘The interacting boson model for anomalous rotational bands is proposed. In the rotational SU(3) limit,an asymptotic limit is discussed. Within the framework of the model several analytic relations for energies and electro-magnetic transition rates are derived.
基金the support from National Natural Science Foundation of China (Grant Nos. 11702137 and U2141246)。
文摘The plastic flow behavior of the rotating band material is investigated in this paper. The rotating band material is processed from H96 brass alloy, which is hardened to a much higher yield strength compared to the annealed one. The dynamically uniaxial compression behavior of the material is tested using the split Hopkinson pressure bar(SHPB) with temperature and strain rate ranging from 297 to 1073 K and500 to 3000 s^(-1), respectively, and a phenomenological plastic flow stress model is developed to describe the mechanical behavior of the material. The material is found to present noticeable temperature sensitivity and weak strain-rate sensitivity. The construction of the plastic flow stress model has two steps. Firstly, three univariate stress functions, taking plastic strain, plastic strain rate and temperature as independent variable, respectively, are proposed by fixing the other two variables. Then, as the three univariate functions describe the special cases of flow stress behavior under various conditions, the principle of stress compatibility is adopted to obtain the complete flow stress function. The numerical results show that the proposed plastic flow stress model is more suitable for the rotating band material than the existing well-known models.
基金The project supported by National Natural Science Foundation of China under Grant No. 10535010, the 973 State Key Basic Research Program of China under Grant No. G2000077400, the CAS Knowledge Innovation Project under Grant No. KJCX2-SW-N02, and the Research Fund for the Doctoral Program of Higher Education under Grant No. 20010284036.
文摘We investigate the ground-state rotational bands of nuclei with Z 〉 100 using cluster model proposed by Buck et al. [Phys. Rev. Left. 94 (2005) 202501]. The core-duster decomposition of each nucleus is determined by the corresponding electric quadrupole transition strength B(E2 : 2^+ → 0^+). The theoretical spectra of fermium and nobelium isotopes are compared with available experimental data. Good agreement between model and data is obtained.
基金This work was supported by the Natural Science Foundation of China(Grant No.11472137)the Fundamental Research Funds for the Central University(Grant No.309181A880 and 30919011204).
文摘In this paper,based on the topological description method,the kinematic and dynamic equations of the projectile flight and projectile-artillery coupling system during the whole process of firing are constructed.The factors that can affect the projectile burst points,namely the state parameters of the projectile on the muzzle and state parameters of the barrel muzzle,as well as the factors that affect the barrel muzzle state parameters,are analyzed.On this basis,the design principle of artillery firing accuracy is proposed.The error analysis and the corresponding inverse problem,the extraction method of key parameters affecting artillery implicated motion,the conformal and control method of rotating band are analyzed and presented.Finally,the presented method is verified through a vehicle mounted howitzer case,and the muzzle state parameter interval is obtained meeting the given firing accuracy.In addition,the sensitivity analysis of artillery parameters shows that the less the correlation between the parameters and the barrel,the less the influence on the projectile implicated motion.The analysis of the coupling effect between rifling and the rotating band shows that the uniform rifling is the optimal form for the conformal of the rotating band during firing.
文摘The configuration-dependent cranked Nilsson-Strutinsky approach was used to investigate the rotational structures in 128Pr and signature splittings of some observed bands could be well described quantitatively at high spin. Its modified model was used to calculate special configurations in order to distinguish the N=4 d3/2s1/2 and g7/2d5/2 orbitals. All observed bands were compared with the calculated configuration assigned to the band and the agreement between experiment and theory is remarkable.
文摘One of the cluster behaviors observed in light nuclei such as20 Ne and44 Ti is the presence of an alpha particle rotating around a double magic number core. In this work, a theoretical method is used for investigation of rotational spectra of two-particle cluster states. To this end, Deng-Fan potential in addition to Hellman potential is used as the core and cluster potential. Next, given the Wildermuth condition, and proper quantum numbers describing the relative motion of the alpha particle and core, the rotational levels of20 Ne and44 Ti isotopes are calculated. Our studies show that the results are in good agreement with the available data.
基金Supported by National Natural Science Foundation of China (10575004,10675007)
文摘The experimental rotational spectra of the deformed nuclei available in even-even and odd-A nuclei in the rare-earth and actinide regions are systematically analyzed with several rotational spectra formulas, including Bohr-Mottelson's I(I+ 1)-expansion, Harris' ω^2-expansion, ab and abc formulas. It is shown that the simple 2-parameter ab formula is much better than the widely used 2-parameter Bohr-Mottelson's AB formula and Harris' αβ formula. The available data of the rotational spectra of both ground-state band in even-even nuclei and one-quasiparticle band in odd-A nuclei can be conveniently and rather accurately reproduced by ab formula and abc formula. The moment of inertia and the variation with rotational frequency of angular momentum can be satisfactorily reproduced by ab and abc formulas.
基金supported by National Natural Science Foundation of China(Nos.10105003,11075064,11075214 and 10927507)the Specialized Research Fund for the Doctoral Programme of Higher Education of China(No.20050183008)the National Basic Research Programme of China(No.2007CB815005)
文摘High spin states in the odd-odd nucleus 124Cs have been investigated through the fusion-evaporation reaction 116Sn(11B, 3n)l24 Cs with a beam energy of 45 MeV. A new rotational band is established and assigned as the high-k configuration of πg9/2140419/2+ ⊙vh 11/2[523]7/2-. Some structures linking to this band have also been observed. According to the results of the excitation energy systematics, the lowest level of this band is assigned as 9-, and the 8- isomer bandhead has not been observed. Another isomer with a half life of 6.3 s has also been observed with its new decay paths established, Its excitation energy is raised by 79 keV, but its Iπ is not changed.
基金supported by the Major State Basic Research Development Program (2007CB815000)by National Natural Science Foundation of China (Nos. 11075214,10927507, 10975191, 10675171, 10105015, 10375092, 10575133, 11175259)
文摘The high spin states of 106pd have been populated through the 100Mo(11B, lp4n)106Pd reaction using a beam energy of 60 MeV provided by the Beijing HI-13 tandem accel- erator at China Institute of Atomic Energy. By analyzing the V-3' coincidence relation and DCO raios of transitions, 3 rotational bands with 13 new states and 22 new 7 transitions belonging to 106pd were constructed. Bands 2 and 3 with negative parity were supposed to build on the vh1l/297/2 and vh11/2ds/2 configuration, respectively.
文摘Within the framework of the U<SUB>sdpf</SUB>(16) interacting boson model (IBM), the effects of strong correlations of the dipole (p<SUP>?</SUP>-boson) and the octupole (f<SUP>?</SUP>-boson) degree of freedom on the positive-parity states of even-even nuclei in SU(3) limit are discussed. It is shown that configurations of an even number of many p- and f-bosons can not only be incorporated into the usual low-lying collective rotational bands, such as the ground state band, β- and γ-vibrational bands, but also naturally form the rotational bands, etc. These results are similar to that of U<SUB>sdg</SUB>(15)-IBM and in good agreement with the experimental data of the nucleus. Besides, several intraband E2 transition probabilities are given, which are consistent with that of U<SUB>sd</SUB>(6)-IBM.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)under Grant No.51175512.
文摘The engraving process of a projectile rotating band is one of the most basic research aspects in interior ballistics,which has not been thoroughly understood thus far.An understanding of this process is of great importance from the viewpoints of optimal design,manufacturing,use,and maintenance of gun and projectile.In this paper,the interaction of copper and nylon rotating bands with a CrNiMo gun barrel during engraving was studied under quasi‐static and dynamic loading conditions.The quasi‐static engraving tests were performed on a CSS‐88500 electronic universal testing machine(EUTM)and a special gas‐gun‐based test rig was designed for dynamic impact engraving of the rotating bands.The mechanical behaviors of copper and nylon were investigated under strain rates of 10^(−3) s^(−1) and 2×10^(3) s^(−1) using an MTS 810 and a split Hopkinson pressure bar(SHPB),respectively.Morphologies of the worn surfaces and cross‐sectional microstructures were observed with scanning electron microscope(SEM)and optical microscope(OM).It was found that large deformation and severe friction occur during engraving.The surface layer is condensed and correlated with a hardness gradient along the depth from the top worn surface.The structure of the rotating band and gun bore,band material,and loading rate have great effects on band engraving.The flow stress‐strain of the copper strongly depends on the applied strain rate.It is suggested that strain rate and temperature play significant roles in the deformation mechanism of rotating bands.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275098 and 11275067)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd-Z nucleus 255Lr are studied by the cranked shell model (CSM) with the paring correlations treated by the particle-number-conserving (PNC) method. This is the first time the detailed theoretical investigations are performed on these rotational bands. Both experimental kinematic and dynamic moments of inertia (f^(1) and ,f^(2) versus rotational frequency are reproduced quite well by the PNC-CSM calculations. By comparing the theoretical kinematic moment of inertia f(1) with the experimental ones extracted from different spin assignments, the spin 17/2- →13/2- is assigned to the lowest-lying 196.6(5) keV transition of the 1/2- [521 ] band, and 15/2→11/2- to the 189(1) keV transition of the 7/2- [514] band, respectively. The proton N = 7 major shell is included in the calculations. The intruder of the high-j low→lj15/2 (1/2-[770]) orbital at the high spin leads to band-crossings at hω = 0.20 (hω~=0.25) MeV for the 7/2-[514]ω= -1/2 (ω= +1/2) band, and at hω=0.175 MeV for the 1/2- [521 ] ω= - 1/2 band, respectively. Further investigations show that the band-crossing frequencies are quadrupole deformation dependent.
基金Supported by the National Natural Science Foundation of China(11775112,11535004,11875027,11761161001)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The multi-particle states and rotational properties of the two-particle bands in 254No are investigated by the cranked shell model with pairing correlations treated by the particle number conserving method. The rotational bands on top of the two-particle Kπ= 3+, 8- and 10+ states and the pairing reduction are studied theoretically in 254No for the first time. The experimental excitation energies and moments of inertia of the multi-particle states are reproduced well by the calculations. Better agreement with the data is achieved by including the high-order deformation ε6,J(1) in these two-particle bands compared with the ground state band is attributed to the pairing reduction due to the Pauli blocking effect.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305059,11275067,11135005 and 11275068)the National Basic Research Program of China(Grant No.2013CB834401)the C3S2 Computing Center of School of Science for their calculation support
文摘Deformed odd-mass nuclei are ideal examples where the interplay between single-particle and collective degrees of freedom can be studied. Inspired by the recent experimental high-spin data in the odd-proton nuclide 171 Tm, we perform projected shell model(PSM) calculations to investigate structure of the ground band and other bands based on isomeric states. In addi- tion to the usual quadrupole-quadrupole force in the Hamiltonian, we employ the hexadecapole-hexadecapole(HH) interac- tion, in a self-consistent way with the hexadecapole deformation of the deformed basis. It is found that the known experi- mental data can be well described by the PSM calculation. The effect of the HH force on the quasiparticle isomeric states is discussed.
基金Supported by Major State Basic Research Development Programm (2007CB815000)National Natural Science Foundation of China (10775184, 10675171, 10575133, 10575092, 10375092)
文摘A new level scheme of 112In have been established up to 6.8 MeV in excitation energy and to a tentative spin of (21+) through the reaction 110Pd(7Li,5n)112In at a beam energy of 50 MeV. In-beam measurements involving γ-γ coincidences and directional correlation of oriented states were performed. M1 bands consisting of I =1 dipole transitions have been observed. Possible quasiparticle configurations suggest that these bands are similar to the shears bands observed in Pb nuclei.
基金Supported by the the National Key R and D Program of China(2023YFA1606503)。
文摘A variable moment of inertia(VMI)inspired interacting boson model(IBM),which includes many-body interactions and a perturbation possessing(5)(or(5))symmetry,is used to investigate the rotational bands of the mass region.A novel modification is introduced,extending the Arima coefficient to the third order.This study is dedicated to the quantitative analysis of evolving trends in intrabandγ-transition energy as well as the kinematic and dynamic moments of inertia(MoIs)within the rotational bands of ^(244)Pu and ^(248)Cm.The computed outcomes exhibit an exceptional degree of agreement with experimental observations across various conditions.The significance of including a higher-order Arima coefficient is further examined by contrasting it with the previously proposed model.The calculated results demonstrate the significance of both the anti-pairing and pairing effects in the evolution of the dynamic MoI.Additionally,these insights reveal the importance of a newly introduced parameter in accurately depicting complex nuclear behaviors,such as back-bending,up-bending,and downturn in the MoI.