According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers an...According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.展开更多
We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain...We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain model, was included in a complementary manner to lattice relaxation. Density functional theory as well as a hybrid functional method based on a plane wave basis set was employed to calculate the lattice structure, elastic constants, electronic properties and optical properties of perovskite BaZrO3. The lattice parameter c exhibited a clear linear dependence on the imposed in-plane strain, but the Poisson's ratio caused by internal relaxation was smaller than the elastic deformation, indicating an "inelastic" or "plastic" relaxation manner caused by the introduction of internal relaxation. As a result, the related electronic and optical properties of perovskite BaZrO3 were also strongly affected by the in-plane strain, which revealed an effective way to adjust the properties of perovskite BaZrO3 via internal relaxation.展开更多
基金Project supported by the Graduate Student Education Teaching Reform Project,China(Grant No.JG201512)the Young Teachers Research Project of Yanshan University,China(Grant No.13LGB028)
文摘According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.
基金Funded by the National Natural Science Foundation of China(No.51502179)the Colleges and Universities in Hebei Province Science and Technology Research Project(No.YQ2014033)the Hebei Key Discipline Construction Project(B2012210004 and E2013210038)
文摘We present the specific ab-initio calculations that detail the variations of perovskite BaZrO3 caused by in-plane strain. Specifically, the internal relaxation, which was not captured in the widely used biaxial strain model, was included in a complementary manner to lattice relaxation. Density functional theory as well as a hybrid functional method based on a plane wave basis set was employed to calculate the lattice structure, elastic constants, electronic properties and optical properties of perovskite BaZrO3. The lattice parameter c exhibited a clear linear dependence on the imposed in-plane strain, but the Poisson's ratio caused by internal relaxation was smaller than the elastic deformation, indicating an "inelastic" or "plastic" relaxation manner caused by the introduction of internal relaxation. As a result, the related electronic and optical properties of perovskite BaZrO3 were also strongly affected by the in-plane strain, which revealed an effective way to adjust the properties of perovskite BaZrO3 via internal relaxation.