The Bangong Lake ophiolite is located in the westernmost part of the Bangong Lake-Nujiang River suture zone. It is a tectonic mélange consisting of numerous individual blocks of peridotite, pillowed and massive l...The Bangong Lake ophiolite is located in the westernmost part of the Bangong Lake-Nujiang River suture zone. It is a tectonic mélange consisting of numerous individual blocks of peridotite, pillowed and massive lavas and mafic dykes with SSZ-type ophiolitic geochemical affinity formed at the end of a Wilson circle. The SHRIMP U-Pb ages of the co-magmatic zircon domains from one gabbroic dyke (Sample 01Y-155) range from 162.5±8.6 Ma to 177.1±1.4 Ma with an average of 167.0±1.4 Ma (n = 12, MSWD = 1.2), suggesting that the subduction of the Bangong Lake Neo-Tethyan Ocean started before the Middle Jurassic. It is inferred that the tectonic transform from spreading to subduction of the Neo-Tethyan Ocean began before the Middle Jurassic in the Bangong Lake area.展开更多
The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicat...The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.展开更多
According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An imm...According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An immature volcanic arc developed in Taniantaweng (Tanen Taunggyi) Range, indicating the existence of an Embryo-Tethyan ocean. (2) The Palaeo-Tethyan stage (C-T2: During the Carboniferous the northern side of the Taniantaweng Range was the main domain of the Palaeo-Tethyan ocean, in which developed flysch sediments intercalated with bimodal volcanic rocks and oceanic tholeiite, and Pemian-Early Triassic are granites were superimposed on the Taniantaweng magmatic are; on the southern side the Dêngqên-Nujiang zone started secondary extension during the Carboniferous, in which the Nujiang ophiolite developed, and the Palaeo-Tethyan ocean closed before the Middle Triassic. (3) The Neo-Tethyan stage (T3-E): During the Late Triassic the Dêngqên zone developed into a relatively matural ocean basin, in which the Dêngqên ophiolite was formed. By the end of the Triassic intraocean subduction occurred, and the ocean domain was reduced gradually, and collided and closed by the end of the Early Jurassic, forming the Yazong mélange; then the Tethyan ocean was completely closed.展开更多
Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typi...Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typical ophiolite in the western part of the Bangong-Nujiang suture zone. It is composed of serpentinized peridotite, cumulate and isotropic gabbros, massive and pillow basalts, basaltic volcanic breccia, and minor red chert. Zircon SHRIMP Ue Pb dating for the isotropic gabbro yielded weighted mean age of 163.4 ± 1.8 Ma. Positive zircon ε Hf(t) values(+15.0 to +20.2) and mantle-like σ^(18)O values(5.29 ±0.21)% indicate that the isotropic gabbros were derived from a long-term depleted mantle source. The isotropic gabbros have normal mid-ocean ridge basalt(N-MORB) like immobile element patterns with high Mg O, low TiO_2 and moderate rare earth element(REE) abundances, and negative Nb,Ti, Zr and Hf anomalies. Basalts show typical oceanic island basalt(OIB) geochemical features, and they are similar to those of OIB-type rocks of the Early Cretaceous Zhongcang oceanic plateau within the Bangong-Nujiang Ocean. Together with these data, we suggest that the Zhongcang ophiolite was probably formed by the subduction of the Bangong-Nujiang Ocean during the Middle Jurassic. The subduction of the Bangong-Nujiang Tethyan Ocean could begin in the Earlye Middle Jurassic and continue to the Early Cretaceous, and finally continental collision between the Lhasa and Qiangtang terranes at the west Bangong-Nujiang suture zone probably has taken place later than the Early Cretaceous(ca. 110 Ma).展开更多
As a typical orogenic gold deposit in Tibet,Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau.In this paper,zircon U-Pb dating,trace elements a...As a typical orogenic gold deposit in Tibet,Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau.In this paper,zircon U-Pb dating,trace elements and Hf isotopic analysis were performed on Au-bearing quartz veins in the Shangxu gold deposit.Zircons from Au-bearing quartz veins can be divided into three types:detrital,magmatic,and hydrothermal zircons.There are two age peaks in detrital zircons:ca.1700 Ma and ca.2400 Ma.There are two groups of concordant ages including 157±4 Ma(MSWD=0.69)and 120±1 Ma(MSWD=0.19)in magmatic zircons,in whichεH f(t)value of ca.120 Ma from the magmatic zircons range from+8.24 to+12.9.An age of 119±2 Ma(MSWD=0.42)was yielded from hydrothermal zircons,and theirεH f(t)values vary between+15.7 and+16.4.According to sericite Ar-Ar age,this paper suggests that an age of 119±2 Ma from hydrothermal zircons represent the formation age of the Shangxu gold Deposit,and its mineralization should be related to the collision between Lhasa Block and Qiangtang Block.The metallogenic age is basically the same as the diagenetic age of Mugagangri granite,andεH f(t)value of hydrothermal zircon is significantly higher than that of the contemporaneous magmatic zircon,which indicates that there is a genetic relationship between the gold mineralization and the deep crust-mantle magmatism.展开更多
The Peng Co ophiolite is located to the west of Peng lake in the area of lakes in north Tibet, which belongs to the Baila-Yilashan sub-belt of the the middle Bangong Co-Nujiang ophiolitic belt. The Peng Co ophiolite i...The Peng Co ophiolite is located to the west of Peng lake in the area of lakes in north Tibet, which belongs to the Baila-Yilashan sub-belt of the the middle Bangong Co-Nujiang ophiolitic belt. The Peng Co ophiolite is mainly composed of mantle peridotites, cumulates, diabase dikes. About 70 percent peridotites are harzburgites and 30 percent are lherzolites. Mineral chemistry of the Peng Co lherzolitesare characterized by low Fo contents(88.85–90.33) of olivine and high Al2O3 content(4.26%–7.25%) in pyroxenes. Compared to the primitive mantle, the Peng Co peridotites have relatively higher MgO contents, lower CaO, Al2O3 and TiO2 contents. The total rare-earth element(REE) contents of the lherzolites are 1.11–1.53 ppm, which are lower than those of the primitive mantle. The chondritenormalized REE patterns of the Peng Co peridotites display slight loss in LREE. In the primitive mantle-normalized spider diagram, the Peng Co peridotites exhibit negative Rb and Zr anomalies and intensively positive U, Ta, Sr anomalies. The PGE contents of Peng Co lherzolites are between 22.9–27 ppb. The chondrite-normalized PGE patterns of the Peng Co lherzolites are consistent with that of the primitive mantle. Mineral and whole-rock geochemistry characteristics of the Peng Co lherzolites show an affinity to abyssal peridotites, indicating that it may have formed in the mid-ocean ridge setting. Through quantitative modeling, we conclude that the Peng Co lherzolites formed after 5%–10% degree of partial melting of the spinelphase lherzolite mantle source. The sharp increase of Cr#(56.74–60.84)in Spinel of harzburgites and relatively high Pd/Ir and Rh/Ir ratios suggest that they have experienced melt-rock reaction. The crystallization sequence of Peng Co cumulate is olivine-clinopyroxene-plagioclase. The Mg# value of clinopyroxene in cumulate peridotite ranges from 86.92 to 89.93, and the mean value of Fo is 84.45, which is obviously higher than that of MOR-type ophiolite cumulates. The mineral composition, sequence of magmatic crystallization and mineral components of Peng Co cumulate are similar to those of the cumulate formed by the SSZ-type ophiolite in the subduction zone. Therefore, we can draw a preliminary conclusion that Peng Co lherzolites were formed in an environment of mid oceanic ridge and were remnants of the spinel lherzolite zone which experienced a partial melting of no more than 10%. In the later period, due to the intra-oceanic subduction, it experienced the rock-meltinteraction, and thus formed the SSZ-type cumulate and harzburgite of high Cr value.展开更多
There is a long-term dispute at Moho depth across the Bangong-Nujiang suture (BNS). Due to the complicated and changeable seismic geological condition, it is not easy to acquire images of the reflective Moho in centra...There is a long-term dispute at Moho depth across the Bangong-Nujiang suture (BNS). Due to the complicated and changeable seismic geological condition, it is not easy to acquire images of the reflective Moho in central Tibet. In the support of the SinoProbe project, a series of deep seismic reflection profiles were conducted to image Moho structure across the BNS and the Qiangtang terrane. These profiles extend from the northern Lhasa terrane to the Qiangtang terrane crossing the BNS. Both shot gathers and migration data show clear Moho images beneath the BNS. The Moho depth varies from 75.1 km (~24 s TWT) beneath the northmost Lhasa terrane to 68.9 km (~22 s TWT) beneath southmost Qiangtang terrane, and rises smoothly to 62.6 km (~20 s TWT ) at ~28 km north of the BNS beneath the Qiangtang terrane. We speculate that the Moho appears a 6.2 km sharp offset across the BNS and becomes ~12.5 km shallower from the northmost Lhasa terrane to the south Qiangtang terrane at ~28 km north of the BNS. The viewpoint of Moho depth across the BNS based on deep seismic reflection data is inconsistent with the previous 20 km offset.展开更多
The ophiolite-bearing Bangong-Nujiang zone (BNZ) traversing central Tibet from east to west separates the Qiangtang block in the north from the Lhasa block in the south. The Cretaceous of the area includes Chuanba For...The ophiolite-bearing Bangong-Nujiang zone (BNZ) traversing central Tibet from east to west separates the Qiangtang block in the north from the Lhasa block in the south. The Cretaceous of the area includes Chuanba Formation (K 1c ), Duoba Formation (K 1d ), Langshan Formation (K 1l ) and Jiangba Formation (K 2j ). The K 1c is composed of black shale, sandy pelite, siltstone, sandstone, coal beds and volcanic rocks, of shallow marine facies. The K 1 d consists of terrestrial siliciclastics intercalated with some calcareous sandstone beds bearing Orbitolina sp. indicating marine influence. The K 1j is carbonate platform deposits of shallow marine and lagoon. The K 2j is characterized by terrestrial thick massive red conglomerate. An active margin related to B-subduction zone is considered to be the geological setting of the Cretaceous sedimentation.展开更多
基金Supported by the Ministry of Land and Resources (Grant No. 20010101)the National Natural Science Foundation of China (Grant No. 40572036 and 40610104005)
文摘The Bangong Lake ophiolite is located in the westernmost part of the Bangong Lake-Nujiang River suture zone. It is a tectonic mélange consisting of numerous individual blocks of peridotite, pillowed and massive lavas and mafic dykes with SSZ-type ophiolitic geochemical affinity formed at the end of a Wilson circle. The SHRIMP U-Pb ages of the co-magmatic zircon domains from one gabbroic dyke (Sample 01Y-155) range from 162.5±8.6 Ma to 177.1±1.4 Ma with an average of 167.0±1.4 Ma (n = 12, MSWD = 1.2), suggesting that the subduction of the Bangong Lake Neo-Tethyan Ocean started before the Middle Jurassic. It is inferred that the tectonic transform from spreading to subduction of the Neo-Tethyan Ocean began before the Middle Jurassic in the Bangong Lake area.
基金jointly sponsored by the Public Science and Technology Research Funds Projects,Ministry of Land Resources of the People’s Republic of China(project No.201511017 and 201511022-02)the Basic Research Fund of the Chinese Academy of Geological Sciences(Grant No.YYWF201608)+3 种基金the National Natural Science Foundation of China(Grant No.41402178)Geological Survey Project of the China Geological Survey(project 1212011405040)Golden Dragon Mining Co.Ltd.(project XZJL-2013-JS03)China Scholarship Council
文摘The Tiegelongnan deposit is a newly discovered super-large porphyry-epithermal Cu-(Au) deposit in the western part of the Bangong Co-Nujiang metallogenic belt, Tibet(China). Field geology and geochronology indicate that the porphyry mineralization was closely related to the Early Cretaceous intermediate-felsic intrusions(ca. 123–120 Ma). Various epithermal ore and gangue mineral types were discovered in the middle-shallow part of the orebody, indicating the presence of epithermal mineralization at Tiegelongnan. Potassic, propylitic, phyllic and advanced argillic alteration zones were identified. 40Ar/39Ar dating of hydrothermal biotite(potassic zone), sericite(phyllic zone), and alunite(advanced argillic zone) in/around the ore-bearing granodiorite porphyry yielded 121.1±0.6 Ma(1σ), 120.8±0.7 Ma(1σ) and 117.9±1.6 Ma(1σ), respectively. Five hydrothermal mineralization stages were identified, of which the Stage IV pyrite was Rb-Sr dated to be 117.5±1.8 Ma(2σ), representing the end of epithermal mineralization. Field geology and geochronology suggest that both the epithermal and porphyry mineralization belong to the same magmatic-hydrothermal system. The Tiegelongnan super-large Cu-(Au) deposit may have undergone a prolonged magmatichydrothermal evolution, with the major mineralization event occurring at ca.120–117Ma.
文摘According to an analysis of the geological features in the eastern sector of the Bangong Co-Nujiang River suture zone, the Tethyan evolution can be divided into three stages. (1) The Embryo-Tethyan stage (Pz1): An immature volcanic arc developed in Taniantaweng (Tanen Taunggyi) Range, indicating the existence of an Embryo-Tethyan ocean. (2) The Palaeo-Tethyan stage (C-T2: During the Carboniferous the northern side of the Taniantaweng Range was the main domain of the Palaeo-Tethyan ocean, in which developed flysch sediments intercalated with bimodal volcanic rocks and oceanic tholeiite, and Pemian-Early Triassic are granites were superimposed on the Taniantaweng magmatic are; on the southern side the Dêngqên-Nujiang zone started secondary extension during the Carboniferous, in which the Nujiang ophiolite developed, and the Palaeo-Tethyan ocean closed before the Middle Triassic. (3) The Neo-Tethyan stage (T3-E): During the Late Triassic the Dêngqên zone developed into a relatively matural ocean basin, in which the Dêngqên ophiolite was formed. By the end of the Triassic intraocean subduction occurred, and the ocean domain was reduced gradually, and collided and closed by the end of the Early Jurassic, forming the Yazong mélange; then the Tethyan ocean was completely closed.
基金supported by National Natural Science Foundation of China (Grant Nos. 41522204, 91755103 and 41502216)the Ministry of Science and Technology of China(2016YFC0600304)+1 种基金CAGS Research Fund (Grant No. YYWF201704)Chinese Geological Survey Project (Grant Nos. DD20160123-05 and DD20160345)
文摘Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typical ophiolite in the western part of the Bangong-Nujiang suture zone. It is composed of serpentinized peridotite, cumulate and isotropic gabbros, massive and pillow basalts, basaltic volcanic breccia, and minor red chert. Zircon SHRIMP Ue Pb dating for the isotropic gabbro yielded weighted mean age of 163.4 ± 1.8 Ma. Positive zircon ε Hf(t) values(+15.0 to +20.2) and mantle-like σ^(18)O values(5.29 ±0.21)% indicate that the isotropic gabbros were derived from a long-term depleted mantle source. The isotropic gabbros have normal mid-ocean ridge basalt(N-MORB) like immobile element patterns with high Mg O, low TiO_2 and moderate rare earth element(REE) abundances, and negative Nb,Ti, Zr and Hf anomalies. Basalts show typical oceanic island basalt(OIB) geochemical features, and they are similar to those of OIB-type rocks of the Early Cretaceous Zhongcang oceanic plateau within the Bangong-Nujiang Ocean. Together with these data, we suggest that the Zhongcang ophiolite was probably formed by the subduction of the Bangong-Nujiang Ocean during the Middle Jurassic. The subduction of the Bangong-Nujiang Tethyan Ocean could begin in the Earlye Middle Jurassic and continue to the Early Cretaceous, and finally continental collision between the Lhasa and Qiangtang terranes at the west Bangong-Nujiang suture zone probably has taken place later than the Early Cretaceous(ca. 110 Ma).
基金financially supported by the National Natural Science Foundation of China(Grant No.91955208)the National Key Research and Development Program of China(Grant nos.2016YFC0600308 and 2018YFC0604103)a program of China Geological Survey(Grant No.DD2021392)。
文摘As a typical orogenic gold deposit in Tibet,Shangxu gold deposit is located at the Bangong Lake–Nujiang River Metallogenic Belt in the south of Qinghai–Tibet Plateau.In this paper,zircon U-Pb dating,trace elements and Hf isotopic analysis were performed on Au-bearing quartz veins in the Shangxu gold deposit.Zircons from Au-bearing quartz veins can be divided into three types:detrital,magmatic,and hydrothermal zircons.There are two age peaks in detrital zircons:ca.1700 Ma and ca.2400 Ma.There are two groups of concordant ages including 157±4 Ma(MSWD=0.69)and 120±1 Ma(MSWD=0.19)in magmatic zircons,in whichεH f(t)value of ca.120 Ma from the magmatic zircons range from+8.24 to+12.9.An age of 119±2 Ma(MSWD=0.42)was yielded from hydrothermal zircons,and theirεH f(t)values vary between+15.7 and+16.4.According to sericite Ar-Ar age,this paper suggests that an age of 119±2 Ma from hydrothermal zircons represent the formation age of the Shangxu gold Deposit,and its mineralization should be related to the collision between Lhasa Block and Qiangtang Block.The metallogenic age is basically the same as the diagenetic age of Mugagangri granite,andεH f(t)value of hydrothermal zircon is significantly higher than that of the contemporaneous magmatic zircon,which indicates that there is a genetic relationship between the gold mineralization and the deep crust-mantle magmatism.
基金granted by National Natural Science Foundation of China(41720104009)China Geology Survey Project(DD20160023-01)Foundation of MLR(201511022)
文摘The Peng Co ophiolite is located to the west of Peng lake in the area of lakes in north Tibet, which belongs to the Baila-Yilashan sub-belt of the the middle Bangong Co-Nujiang ophiolitic belt. The Peng Co ophiolite is mainly composed of mantle peridotites, cumulates, diabase dikes. About 70 percent peridotites are harzburgites and 30 percent are lherzolites. Mineral chemistry of the Peng Co lherzolitesare characterized by low Fo contents(88.85–90.33) of olivine and high Al2O3 content(4.26%–7.25%) in pyroxenes. Compared to the primitive mantle, the Peng Co peridotites have relatively higher MgO contents, lower CaO, Al2O3 and TiO2 contents. The total rare-earth element(REE) contents of the lherzolites are 1.11–1.53 ppm, which are lower than those of the primitive mantle. The chondritenormalized REE patterns of the Peng Co peridotites display slight loss in LREE. In the primitive mantle-normalized spider diagram, the Peng Co peridotites exhibit negative Rb and Zr anomalies and intensively positive U, Ta, Sr anomalies. The PGE contents of Peng Co lherzolites are between 22.9–27 ppb. The chondrite-normalized PGE patterns of the Peng Co lherzolites are consistent with that of the primitive mantle. Mineral and whole-rock geochemistry characteristics of the Peng Co lherzolites show an affinity to abyssal peridotites, indicating that it may have formed in the mid-ocean ridge setting. Through quantitative modeling, we conclude that the Peng Co lherzolites formed after 5%–10% degree of partial melting of the spinelphase lherzolite mantle source. The sharp increase of Cr#(56.74–60.84)in Spinel of harzburgites and relatively high Pd/Ir and Rh/Ir ratios suggest that they have experienced melt-rock reaction. The crystallization sequence of Peng Co cumulate is olivine-clinopyroxene-plagioclase. The Mg# value of clinopyroxene in cumulate peridotite ranges from 86.92 to 89.93, and the mean value of Fo is 84.45, which is obviously higher than that of MOR-type ophiolite cumulates. The mineral composition, sequence of magmatic crystallization and mineral components of Peng Co cumulate are similar to those of the cumulate formed by the SSZ-type ophiolite in the subduction zone. Therefore, we can draw a preliminary conclusion that Peng Co lherzolites were formed in an environment of mid oceanic ridge and were remnants of the spinel lherzolite zone which experienced a partial melting of no more than 10%. In the later period, due to the intra-oceanic subduction, it experienced the rock-meltinteraction, and thus formed the SSZ-type cumulate and harzburgite of high Cr value.
文摘There is a long-term dispute at Moho depth across the Bangong-Nujiang suture (BNS). Due to the complicated and changeable seismic geological condition, it is not easy to acquire images of the reflective Moho in central Tibet. In the support of the SinoProbe project, a series of deep seismic reflection profiles were conducted to image Moho structure across the BNS and the Qiangtang terrane. These profiles extend from the northern Lhasa terrane to the Qiangtang terrane crossing the BNS. Both shot gathers and migration data show clear Moho images beneath the BNS. The Moho depth varies from 75.1 km (~24 s TWT) beneath the northmost Lhasa terrane to 68.9 km (~22 s TWT) beneath southmost Qiangtang terrane, and rises smoothly to 62.6 km (~20 s TWT ) at ~28 km north of the BNS beneath the Qiangtang terrane. We speculate that the Moho appears a 6.2 km sharp offset across the BNS and becomes ~12.5 km shallower from the northmost Lhasa terrane to the south Qiangtang terrane at ~28 km north of the BNS. The viewpoint of Moho depth across the BNS based on deep seismic reflection data is inconsistent with the previous 20 km offset.
基金DFG-Tibet-Projects SCHN 202/14-1 and attained with the assistance of the AvH.
文摘The ophiolite-bearing Bangong-Nujiang zone (BNZ) traversing central Tibet from east to west separates the Qiangtang block in the north from the Lhasa block in the south. The Cretaceous of the area includes Chuanba Formation (K 1c ), Duoba Formation (K 1d ), Langshan Formation (K 1l ) and Jiangba Formation (K 2j ). The K 1c is composed of black shale, sandy pelite, siltstone, sandstone, coal beds and volcanic rocks, of shallow marine facies. The K 1 d consists of terrestrial siliciclastics intercalated with some calcareous sandstone beds bearing Orbitolina sp. indicating marine influence. The K 1j is carbonate platform deposits of shallow marine and lagoon. The K 2j is characterized by terrestrial thick massive red conglomerate. An active margin related to B-subduction zone is considered to be the geological setting of the Cretaceous sedimentation.