期刊文献+
共找到2,969篇文章
< 1 2 149 >
每页显示 20 50 100
Dendritic Cell Algorithm with Bayesian Optimization Hyperband for Signal Fusion
1
作者 Dan Zhang Yu Zhang Yiwen Liang 《Computers, Materials & Continua》 SCIE EI 2023年第8期2317-2336,共20页
The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of c... The dendritic cell algorithm(DCA)is an excellent prototype for developing Machine Learning inspired by the function of the powerful natural immune system.Too many parameters increase complexity and lead to plenty of criticism in the signal fusion procedure of DCA.The loss function of DCA is ambiguous due to its complexity.To reduce the uncertainty,several researchers simplified the algorithm program;some introduced gradient descent to optimize parameters;some utilized searching methods to find the optimal parameter combination.However,these studies are either time-consuming or need to be revised in the case of non-convex functions.To overcome the problems,this study models the parameter optimization into a black-box optimization problem without knowing the information about its loss function.This study hybridizes bayesian optimization hyperband(BOHB)with DCA to propose a novel DCA version,BHDCA,for accomplishing parameter optimization in the signal fusion process.The BHDCA utilizes the bayesian optimization(BO)of BOHB to find promising parameter configurations and applies the hyperband of BOHB to allocate the suitable budget for each potential configuration.The experimental results show that the proposed algorithm has significant advantages over the otherDCAexpansion algorithms in terms of signal fusion. 展开更多
关键词 Dendritic cell algorithm signal fusion parameter optimization bayesian optimization hyperband
下载PDF
Anti-swarm UAV radar system based on detection data fusion
2
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM RADAR high resolution deep neural network fusion algorithm
下载PDF
Optimized air-ground data fusion method for mine slope modeling
3
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
下载PDF
Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms 被引量:3
4
作者 胡昌振 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期49-54,共6页
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ... To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively. 展开更多
关键词 MULTISENSOR data fusion fuzzy random genetic algorithm
下载PDF
Multi-sources information fusion algorithm in airborne detection systems 被引量:18
5
作者 Yang Yan Jing Zhanrong Gao Tan Wang Huilong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期171-176,共6页
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ... To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation. 展开更多
关键词 Information fusion Dempster-Shafer evidence theory Subjective Bayesian algorithm Airplane detecting system
下载PDF
A Novel Multi-sensor Data Fusion Algorithm and Its Application to Diagnostics 被引量:2
6
作者 Li Xiong Xu Zongchang Dong Zhiming 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第z1期788-790,共3页
To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy simila... To Meet the requirements of multi-sensor data fusion in diagnosis for complex equipment systems,a novel, fuzzy similarity-based data fusion algorithm is given. Based on fuzzy set theory, it calculates the fuzzy similarity among a certain sensor's measurement values and the multiple sensor's objective prediction values to determine the importance weigh of each sensor,and realizes the multi-sensor diagnosis parameter data fusion.According to the principle, its application software is also designed. The applied example proves that the algorithm can give priority to the high-stability and high -reliability sensors and it is laconic ,feasible and efficient to real-time circumstance measure and data processing in engine diagnosis. 展开更多
关键词 DIAGNOSTICS MULTI-SENSOR DATA fusion algorithm ENGINE
下载PDF
Neural Network Based Algorithm and Simulation of Information Fusion in the Coal Mine 被引量:4
7
作者 ZHANG Xiao-qiang WANG Hui-bing YU Hong-zhen 《Journal of China University of Mining and Technology》 EI 2007年第4期595-598,共4页
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a... The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented. 展开更多
关键词 neural network information fusion algorithm and simulation SENSORS
下载PDF
Multi-sensor Hybrid Fusion Algorithm Based on Adaptive Square-root Cubature Kalman Filter 被引量:6
8
作者 Xiaogong Lin Shusheng Xu Yehai Xie 《Journal of Marine Science and Application》 2013年第1期106-111,共6页
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate r... In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms. 展开更多
关键词 hybrid fusion algorithm square-root cubature Kalman filter adaptive filter fault detection
下载PDF
An Improved Medical Image Fusion Algorithm for Anatomical and Functional Medical Images 被引量:2
9
作者 CHEN Mei-ling TAO Ling QIAN Zhi-yu 《Chinese Journal of Biomedical Engineering(English Edition)》 2009年第2期84-92,共9页
In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical ima... In recent years,many medical image fusion methods had been exploited to derive useful information from multimodality medical image data,but,not an appropriate fusion algorithm for anatomical and functional medical images.In this paper,the traditional method of wavelet fusion is improved and a new fusion algorithm of anatomical and functional medical images,in which high-frequency and low-frequency coefficients are studied respectively.When choosing high-frequency coefficients,the global gradient of each sub-image is calculated to realize adaptive fusion,so that the fused image can reserve the functional information;while choosing the low coefficients is based on the analysis of the neighborbood region energy,so that the fused image can reserve the anatomical image's edge and texture feature.Experimental results and the quality evaluation parameters show that the improved fusion algorithm can enhance the edge and texture feature and retain the function information and anatomical information effectively. 展开更多
关键词 medical image fusion wavelet transform fusion algorithm quality evaluation
下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:1
10
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 Multi-layer regression algorithm fusion Stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
下载PDF
Adaptive Multisensor Tracking Fusion Algorithm for Air-borne Distributed Passive Sensor Network
11
作者 Zhen Ding Hongcai Zhang & Guanzhong Dai (Department of Automatic Control, Northwestern Polytechnical UniversityShaanxi, Xi’an 710072, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第3期15-23,共9页
Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new... Single passive sensor tracking algorithms have four disadvantages: bad stability, longdynamic time, big bias and sensitive to initial conditions. So the corresponding fusion algorithm results in bad performance. A new error analysis method for two passive sensor tracking system is presented and the error equations are deduced in detail. Based on the equations, we carry out theoretical computation and Monte Carlo computer simulation. The results show the correctness of our error computation equations. With the error equations, we present multiple 'two station'fusion algorithm using adaptive pseudo measurement equations. This greatly enhances the tracking performance and makes the algorithm convergent very fast and not sensitive to initial conditions.Simulation results prove the correctness of our new algorithm. 展开更多
关键词 Passive tracking system Error analysis fusion algorithm Distributed passive sensornetwork Distributed estimation.
下载PDF
Adaptive allocation strategy for cooperatively jamming netted radar system based on improved cuckoo search algorithm 被引量:1
12
作者 De-jiang Lu Xing Wang +1 位作者 Xiao-tian Wu You Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期285-297,共13页
The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DA... The jamming resource allocation problem of the aircraft formation cooperatively jamming netted radar system is investigated.An adaptive allocation strategy based on dynamic adaptive discrete cuckoo search algorithm(DADCS)is proposed,whose core is to adjust allocation scheme of limited jamming resource of aircraft formation in real time to maintain the best jamming effectiveness against netted radar system.Firstly,considering the information fusion rules and different working modes of the netted radar system,a two-factor jamming effectiveness evaluation function is constructed,detection probability and aiming probability are adopted to characterize jamming effectiveness against netted radar system in searching and tracking mode,respectively.Then a nonconvex optimization model for cooperatively jamming netted radar system is established.Finally,a dynamic adaptive discrete cuckoo search algorithm(DADCS)is constructed by improving path update strategies and introducing a global learning mechanism,and a three-step solution method is proposed subsequently.Simulation results are provided to demonstrate the advantages of the proposed optimization strategy and the effectiveness of the improved algorithm. 展开更多
关键词 Cuckoo search algorithm Netted radar system Radar countermeasures Resource allocation Information fusion
下载PDF
Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification
13
作者 Xia JING Yan BAO 《Asian Agricultural Research》 2015年第1期52-56 60,60,共6页
Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object ima... Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy. 展开更多
关键词 IKONOS IMAGE fusion algorithm COMPARISON Evaluatio
下载PDF
Chlorophyll-a Estimation in Tachibana Bay by Data Fusion of GOCI and MODIS Using Linear Combination Index Algorithm
14
作者 Yuji Sakuno Keita Makio +2 位作者 Kazuhiko Koike Maung-Saw-Htoo-Thaw   Shigeru Kitahara 《Advances in Remote Sensing》 2013年第4期292-296,共5页
This study discusses the fusion of chlorophyll-a (Chl.a) estimates around Tachibana Bay (Nagasaki Prefecture, Japan) obtained from MODIS and GOCI satellite data. First, the equation of GOCI LCI was theoretically calcu... This study discusses the fusion of chlorophyll-a (Chl.a) estimates around Tachibana Bay (Nagasaki Prefecture, Japan) obtained from MODIS and GOCI satellite data. First, the equation of GOCI LCI was theoretically calculated on the basis of the linear combination index (LCI) method proposed by Frouin et al. (2006). Next, assuming a linear relationship between them, the MODIS LCI and GOCI LCI methods were compared by using the Rayleigh reflectance product dataset of GOCI and MODIS, collected on July 8, July 25, and July 31, 2012. The results were found to be correlated significantly. GOCI Chl.a estimates of the finally proposed method favorably agreed with the in-situ Chl.a data in Tachibana Bay. 展开更多
关键词 CHLOROPHYLL-A LCI algorithm GOCI MODIS Data fusion
下载PDF
A new PQ disturbances identification method based on combining neural network with least square weighted fusion algorithm
15
作者 吕干云 程浩忠 翟海保 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期649-653,共5页
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances... A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above. 展开更多
关键词 PQ disturbances identification combining neural network LS weighted fusion algorithm improved PLL system
下载PDF
Fusion Strategy for Improving Medical Image Segmentation
16
作者 Fahad Alraddady E.A.Zanaty +1 位作者 Aida HAbu bakr Walaa M.Abd-Elhafiez 《Computers, Materials & Continua》 SCIE EI 2023年第2期3627-3646,共20页
In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic al... In this paper,we combine decision fusion methods with four metaheuristic algorithms(Particle Swarm Optimization(PSO)algorithm,Cuckoo search algorithm,modification of Cuckoo Search(CS McCulloch)algorithm and Genetic algorithm)in order to improve the image segmentation.The proposed technique based on fusing the data from Particle Swarm Optimization(PSO),Cuckoo search,modification of Cuckoo Search(CS McCulloch)and Genetic algorithms are obtained for improving magnetic resonance images(MRIs)segmentation.Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods.In order to obtain parts of the points that determine similar membership values,we apply the different rules of incorporation for these groups.The proposed approach is applied to challenging applications:MRI images,gray matter/white matter of brain segmentations and original black/white images Behavior of the proposed algorithm is provided by applying to different medical images.It is shown that the proposed method gives accurate results;due to the decision fusion produces the greatest improvement in classification accuracy. 展开更多
关键词 Decision fusion particle swarmoptimization(PSO) cuckoo search algorithm CS McCulloch algorithm genetic algorithm CT and MRI
下载PDF
An Improved Honey Badger Algorithm through Fusing Multi-Strategies
17
作者 Zhiwei Ye Tao Zhao +2 位作者 Chun Liu Daode Zhang Wanfang Bai 《Computers, Materials & Continua》 SCIE EI 2023年第8期1479-1495,共17页
TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided... TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA. 展开更多
关键词 Honey Badger algorithm multi-strategies fusion tent chaotic mapping compound random factors
下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
18
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors Data fusion Long-term and short-term memory network Particle swarm optimization algorithm
下载PDF
Feature Fusion Based Deep Transfer Learning Based Human Gait Classification Model
19
作者 C.S.S.Anupama Rafina Zakieva +4 位作者 Afanasiy Sergin E.Laxmi Lydia Seifedine Kadry Chomyong Kim Yunyoung Nam 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1453-1468,共16页
Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioel... Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition. 展开更多
关键词 Feature fusion human gait recognition deep learning electromyography signals artificial algae algorithm
下载PDF
改进的轻量级行人目标检测算法 被引量:1
20
作者 金梅 任婷婷 +2 位作者 张立国 闫梦萧 沈明浩 《计量学报》 CSCD 北大核心 2024年第2期186-193,共8页
针对行人目标数量密集、目标尺度小和目标周围背景光照强弱不一而导致的检测精度低的问题,提出一种基于特征融合的轻量化行人检测算法。以TinyYOLOv4为基础框架,首先,搭建新的主干特征提取网络(CSPDarknet53-S),在原主干网络的基础上加... 针对行人目标数量密集、目标尺度小和目标周围背景光照强弱不一而导致的检测精度低的问题,提出一种基于特征融合的轻量化行人检测算法。以TinyYOLOv4为基础框架,首先,搭建新的主干特征提取网络(CSPDarknet53-S),在原主干网络的基础上加入新的特征提取模块(REM)来增强网络提取行人特征的能力。其次,改进特征融合结构,在主干网络提取高低层特征图后,先是在主干网络与特征融合网络间加入特征融合模块(RM-block)来增大感受野;然后引入浅层特征信息保留更多小目标特征,形成新的特征融合网络(IFFM)。最后,通过YOLO Head对融合来的特征图进行处理获得输出结果。实验结果表明,提出的算法在行人数据集(PASCAL VOC2007和VOC2012的person数据)上取得了较高的检测精度以及较好的检测效果。 展开更多
关键词 目标检测 特征融合 浅层特征 TinyYOLOv4算法 注意力机制
下载PDF
上一页 1 2 149 下一页 到第
使用帮助 返回顶部