Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particle...Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particles of fine(0.2 to 1.0 mm),medium(1.0 to 2.5 mm),and coarse(2.5 to 12.0 mm)sizes,derived from the bark of Leucaena leucocephala,were hot-pressed using a heating plate at 175℃for 7 min to create single-layer particleboards measuring 320 mm×320 mm×10 mm,targeting a density of 700 kg/m^(3).Subsequently,the samples were trimmed and conditioned at 20℃and 65%relative humidity.In this study,we compared bark particleboard bonded with urea formaldehyde(UF)adhesive to fine-sized particleboard bonded with demethylated lignin adhesive.The results indicated that bark particleboards utilizing demethylated lignin and UF adhesives exhibited similar qualities.Coarse particleboard showed differences in modulus of elasticity(MOE)and modulus of rupture(MOR),while medium-sized particles exhibited significant variations in moisture content(MC)and water absorption(WA).Furthermore,the thickness swelling of coarse and medium-sized particles under wet and oven-dried conditions exhibited notable distinctions.Overall,the demethylated lignin adhesive extracted from L.leucocephala bark demonstrated similar quality to UF adhesive,with particle size correlating inversely to the strength of the bark particleboard.展开更多
Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in ...Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in the gaps formed in the montane forest stands.The research was carried out in the Babiog orski National Park.The research plots were marked out in the gaps of the stands,which were formed as a result of bark beetle gradation.Control plots were located in undisturbed stands.The research covered wood of two species–spruce and beech in the form of cubes with dimensions of 50 mm×50 mm×22 mm.Wood samples were placed directly on the soil surface and subjected to laboratory analysis after 36 months.A significant influence of the wood species and the study plot type on the physicochemical properties of the tested wood samples was found.Wood characteristics strongly correlated with soil moisture.A significantly higher mass decline of wood samples was recorded on the reference study plots,which were characterized by more stable moisture conditions.Poorer decomposition of wood in the gaps regardless of the species is related to lower moisture.The wood species covered by the study differed in the decomposition rate.Spruce wood samples were characterized by a significantly higher decomposition rate compared to beech wood samples.Our research has confirmed that disturbances that lead to the formation of gaps have a direct impact on the decomposition process of deadwood.展开更多
The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and l...The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and lowtoxic base-catalyzed modification with propylene carbonate(PC).FTIR spectroscopy,HP-LC,GC,GPC,and wet chemistry methods were used to characterize the starting constituents,intermediate and final products of the reaction and to monitor the different pathways of PC conversion.The reaction of extractives as well as the model compounds,including catechol,xylose,PEG 400,and benzoic acid,with PC indicated the ability of OH groups of different origins present in the extractives to condense with equivalent amounts of PC.The polyols obtained consist of a copolymer fraction with one oxypropyl unit grafted per OH functionality of extractive components on average and oligo oxypropyl diols with a small number of carbonate linkages in the chain,obtained as a result of remaining PC homopolymerization.The domination of the oxypropylation mechanism vs.transcarbonation for PC ring opening was observed for both copolymerization and homopolymerization processes,making the process of oxypropylation with PC similar to that of conventional oxypropylation.At optimal reaction conditions,including a PC/OH ratio of 3.0 and a 24-h duration at 150°C,uniform polyols with low viscosity of~900 mPa·s^(-1),a biomass content of~27%,and an OHV of~500 mg KOH·g^(-1) were obtained.Increasing the temperature of modification allows shortening the process but drastically increases the polyol viscosity.At fixed temperature values,increasing the PC/OH ratio not only decreases the biomass content but also strongly prolongs the processing.The significantly increased duration of the process using PC as an alternative oxyalkylation agent compared to that of oxyalkylation with propylene oxide is a reasonable trade-off for using a safer and more environmentally friendly technology.展开更多
Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this w...Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.展开更多
Natural disturbances have significantly intensified across European forests,with bark beetle outbreaks being the most rapidly escalating disturbance type.Since 2018,the Czech Republic(Central Europe)has become a Europ...Natural disturbances have significantly intensified across European forests,with bark beetle outbreaks being the most rapidly escalating disturbance type.Since 2018,the Czech Republic(Central Europe)has become a Europe's disturbance epicentre due to the unprecedented outbreak of spruce bark beetle Ips typographus in the forests dominated by Norway spruce Picea abies.Here we provide novel insights into the impacts and dynamics of this disturbance from 2016 to 2022.The investigation is based on annual forest change maps developed by the classification of optical and Synthetic Aperture Radar satellite imagery.We identified seven major outbreak foci across the country,where the outbreaks culminated between 2018 and 2021.Most of the outbreak waves exhibited a symmetric shape,characterized by a three-year build-up phase,a single culmination year,and the subsequent decline.The substantial proportion of spruce remaining in the outbreak areas after the culmination point implies that resource depletion is an improbable cause for the outbreak's retreat.In the year of retreat,the proportion of spruce in the forest ranged between 26%and 36%in most of the outbreak areas.The disturbance dynamics manifested a transition from the emergence of new tree mortality spots in the early outbreak phase to their short-range expansion,suggesting density-dependent changes in bark beetle dispersal during the studied period.The core disturbance zone,pinpointed in 2022,covered an area of 9,000 km^(2) and experienced a 38%loss in forest cover.Within this area,forest fragmentation increased significantly,leading to a greater forest patch complexity and reduced connectivity among the patches.The presented findings can serve as a glimpse into the future for other European regions,revealing the potential impacts of natural disturbances amplified by climate change.展开更多
The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated...The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated by GC and GC–MS.Generally,the amounts of extractive contents were higher in the inner bark than in the outer bark except for P.merksuii.Fatty acids,monoterpenes,sesquiterpenes,resin acids,triterpenoids,and steroids were detected and quantified.Inner and outer barks differed not only in content of these compounds but also in their composition.Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P.caribeae, P.insularis,and P.montezumae.Steroids and triterpenoids were the dominant compounds identified in the inner bark of P.elliotii,P.insularis,and P.merkusii.Resin acids were the most abundant group in the inner bark of P.oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.展开更多
Barks of Pinus massoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity a...Barks of Pinus massoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity and conductivity. The acidity of the inner and outer barks from the polluted sites was significantly higher than those from the clean site, suggesting that the acidity of the bark occurred in concurrent with the air pollution. The significant lower pH values of the outer bark than the inner bark collected from all sites indicated that the outer bark was more sensitive than the inner bark in response to acid pollution, implying that the outer bark is more preferable when used as indication of atmospheric acid pollution. The conductivities of the inner barks differed significantly among the three sites, with higher values at the clean site. However, the significant differences were not observed among these sites. Furthermore, the pH values for the inner and outer barks were not correlated with the conductivity, which did not coincide with some other studies.展开更多
AIM To investigate the protective effects of Foeniculum vulgare root bark (FVRB), a traditional Uyghur medicine, against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. METHODS Mice were randomly divided...AIM To investigate the protective effects of Foeniculum vulgare root bark (FVRB), a traditional Uyghur medicine, against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. METHODS Mice were randomly divided into eight groups (n = 20 each). Except for the normal control group, mice in the rest groups were intraperitoneally injected (i.p.) with 0.1% CCl4-olive oil mixture at 10 mL/kg twice a week to induce liver fibrosis. After 4 wk, mice were treated concurrently with the 70% ethanol extract of FVRB (88, 176, 352 and 704 mg/kg, respectively) daily by oral gavage for 4 wk to evaluate its protective effects. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), hexadecenoic acid (HA), laminin (LN), glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) in liver tissues were measured. Hematoxylin-eosin (H and E) staining and Masson trichrome (MT) staining were performed to assess histopathological changes in the liver. The expression of transforming growth factor beta 1 (TGF-beta 1), matrix metalloprotein 9 (MMP-9) and metallopeptidase inhibitor 1 (TIMP-1) was detected by immunohistochemical analysis. Additionally, TGF-beta 1 and alpha-smooth muscle actin (alpha-SMA) protein expression was measured by Western blot. RESULTS A significant reduction in serum levels of AST, ALT, TG, HA and LN was observed in the FVRB-treated groups, suggesting that FVRB displayed hepatoprotective effects. Also, the depletion of GSH, SOD, and MDA accumulation in liver tissues was suppressed by FVRB. The expression of TGF-beta 1, MMP-9 and TIMP-1 determined by immunohistochemistry was markedly reduced in a dose-dependent manner by FVRB treatment. Furthermore, protective effects of FVRB against CCl4-induced liver injury were confirmed by histopathological studies. Protein expression of TGF-beta 1 and alpha-SMA detected by Western blot was decreased by FVRB treatment. CONCLUSION Our results indicate that FVRB may be a promising agent against hepatic fibrosis and its possible mechanisms are inhibiting lipid peroxidation and reducing collagen formation in liver tissue of liver fibrosis mice.展开更多
Objective:To evaluate the antitumor activity of Manilkara zapota(M.zapota) L.stem bark against Ehrlich ascites carcinoma(EAC) in Swiss albino mice.Methods:The in vivo antitumour activity of the ethyl acetate extract o...Objective:To evaluate the antitumor activity of Manilkara zapota(M.zapota) L.stem bark against Ehrlich ascites carcinoma(EAC) in Swiss albino mice.Methods:The in vivo antitumour activity of the ethyl acetate extract of stem bark of M.zapota L.(EASM) was evaluated at 50,100 and 200 mg/kg bw against EAC using mean survival time.After administration of the extract of M.zapota,viable EAC cell count and body weight in the EAC tumour hosts were observed.The animal was also observed for improvement in the haematological parameters(e.g.,heamoglobin content,red and white blood cells count and differential cell count) after EASM treatment. Results:Intraperitoneal administration of EASM reduced viable EAC cells,increased the survival lime,and restored altered haematological parameters.Significant efficacy was observed for EASM at 100 mg/kg dose(P<0.05).Conclusions:It can be concluded that the elhyl acetate extract of stem bark of M.zapota L.possesses significant antitumour activity.展开更多
基金the financial support provided by UMS Great(GUG0217-1/2018),which played a crucial role in the completion of this study.
文摘Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particles of fine(0.2 to 1.0 mm),medium(1.0 to 2.5 mm),and coarse(2.5 to 12.0 mm)sizes,derived from the bark of Leucaena leucocephala,were hot-pressed using a heating plate at 175℃for 7 min to create single-layer particleboards measuring 320 mm×320 mm×10 mm,targeting a density of 700 kg/m^(3).Subsequently,the samples were trimmed and conditioned at 20℃and 65%relative humidity.In this study,we compared bark particleboard bonded with urea formaldehyde(UF)adhesive to fine-sized particleboard bonded with demethylated lignin adhesive.The results indicated that bark particleboards utilizing demethylated lignin and UF adhesives exhibited similar qualities.Coarse particleboard showed differences in modulus of elasticity(MOE)and modulus of rupture(MOR),while medium-sized particles exhibited significant variations in moisture content(MC)and water absorption(WA).Furthermore,the thickness swelling of coarse and medium-sized particles under wet and oven-dried conditions exhibited notable distinctions.Overall,the demethylated lignin adhesive extracted from L.leucocephala bark demonstrated similar quality to UF adhesive,with particle size correlating inversely to the strength of the bark particleboard.
基金financed by the National Science Centre,Poland:decision no.DEC 2020/39/B/NZ9/00372 and decision no.DEC-2021/43/O/NZ9/00066。
文摘Decaying wood is an essential element of forest ecosystems and it affects its other components.The aim of our research was to determine the decomposition rate of deadwood in various humidity and thermal conditions in the gaps formed in the montane forest stands.The research was carried out in the Babiog orski National Park.The research plots were marked out in the gaps of the stands,which were formed as a result of bark beetle gradation.Control plots were located in undisturbed stands.The research covered wood of two species–spruce and beech in the form of cubes with dimensions of 50 mm×50 mm×22 mm.Wood samples were placed directly on the soil surface and subjected to laboratory analysis after 36 months.A significant influence of the wood species and the study plot type on the physicochemical properties of the tested wood samples was found.Wood characteristics strongly correlated with soil moisture.A significantly higher mass decline of wood samples was recorded on the reference study plots,which were characterized by more stable moisture conditions.Poorer decomposition of wood in the gaps regardless of the species is related to lower moisture.The wood species covered by the study differed in the decomposition rate.Spruce wood samples were characterized by a significantly higher decomposition rate compared to beech wood samples.Our research has confirmed that disturbances that lead to the formation of gaps have a direct impact on the decomposition process of deadwood.
基金financial support from the Latvian Council of Science,Project No.lzp-2021/1-0207.
文摘The isolated hydrophilic black alder(Alnus glutinosa)bark extractives were characterized in terms of component and functional composition and converted at 150℃-170℃ into liquid green polyols using solvent-free and lowtoxic base-catalyzed modification with propylene carbonate(PC).FTIR spectroscopy,HP-LC,GC,GPC,and wet chemistry methods were used to characterize the starting constituents,intermediate and final products of the reaction and to monitor the different pathways of PC conversion.The reaction of extractives as well as the model compounds,including catechol,xylose,PEG 400,and benzoic acid,with PC indicated the ability of OH groups of different origins present in the extractives to condense with equivalent amounts of PC.The polyols obtained consist of a copolymer fraction with one oxypropyl unit grafted per OH functionality of extractive components on average and oligo oxypropyl diols with a small number of carbonate linkages in the chain,obtained as a result of remaining PC homopolymerization.The domination of the oxypropylation mechanism vs.transcarbonation for PC ring opening was observed for both copolymerization and homopolymerization processes,making the process of oxypropylation with PC similar to that of conventional oxypropylation.At optimal reaction conditions,including a PC/OH ratio of 3.0 and a 24-h duration at 150°C,uniform polyols with low viscosity of~900 mPa·s^(-1),a biomass content of~27%,and an OHV of~500 mg KOH·g^(-1) were obtained.Increasing the temperature of modification allows shortening the process but drastically increases the polyol viscosity.At fixed temperature values,increasing the PC/OH ratio not only decreases the biomass content but also strongly prolongs the processing.The significantly increased duration of the process using PC as an alternative oxyalkylation agent compared to that of oxyalkylation with propylene oxide is a reasonable trade-off for using a safer and more environmentally friendly technology.
基金supported by the Institut de la Francophonie pour le Developpement Durable(IFDD/Canada)/Projet de Deploiement des Technologies et Innovations Environnementales(PDTIE)funded by Organisation Internationale de la Francophonie(OIF)the Organisation of African,Caribbean and Pacific States and the European Union(EU)(FED/220/421-370)the Local Materials Promotion Authority(MIPROMALO)of the Ministry of Scientific Research and Innovation of Cameroon who made it possible for this scientific work to be carried out.
文摘Extracts of plant origin,particularly tannins,are attracting growing interest for the sustainable development of materials in the industrial sector.The discovery of new tannins is therefore necessary.The aim of this work was to contribute to the understanding of the properties of Paraberlinia bifoliolata tannin by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy MALDI-TOF/MS and Carbon 13 Nuclear Magnetic Resonance(13C NMR).The chemical composition of tannin extracted from Paraberlinia bifoliolata bark was determined,as was the mechanical strength of the resin hardened with Acacia nilotica extracts.Yield by successive water extraction was 35%.MALDI-TOF/MS analysis revealed the presence of three new compounds in this tannin,previously unknown in this family of extracts.These are 3-hydroxyproline acid,N-methyl-4-hydroxypipecolic acid and N-methyl-5-dihydroxypipecolic acid.The identification of the above molecules means that this tannin can be used for industrial applications,as a resin in the manufacture of particleboard and in the formulation of green corrosion inhibitors.This information is reinforced by 13C NMR spectrometry,which indicates the presence of several polyflavonoid units,confirming the condensed nature of the tannin.Thermomechanical analysis of the resin formed by the purified tannin of Paraberlinia bifoliolata to which a vegetal biohardener has been added provided a Modulus of Elasticity(MOE)value of 4840 MPa at 150℃,confirming its possible use as a binder resin in the manufacture of wood panels as well as for the formulation of a corrosion inhibitor.
基金supported by the project“EVA4.0”,No.CZ.02.1.01/0.0/0.0/16_019/0000803 financed by OP RDE of the Czech Republicthe project of the National Agency for Agriculture Research of the Czech Republic No.QK23020039lthe Technology Agency of the Czech Republic under grant No.SS02030018.
文摘Natural disturbances have significantly intensified across European forests,with bark beetle outbreaks being the most rapidly escalating disturbance type.Since 2018,the Czech Republic(Central Europe)has become a Europe's disturbance epicentre due to the unprecedented outbreak of spruce bark beetle Ips typographus in the forests dominated by Norway spruce Picea abies.Here we provide novel insights into the impacts and dynamics of this disturbance from 2016 to 2022.The investigation is based on annual forest change maps developed by the classification of optical and Synthetic Aperture Radar satellite imagery.We identified seven major outbreak foci across the country,where the outbreaks culminated between 2018 and 2021.Most of the outbreak waves exhibited a symmetric shape,characterized by a three-year build-up phase,a single culmination year,and the subsequent decline.The substantial proportion of spruce remaining in the outbreak areas after the culmination point implies that resource depletion is an improbable cause for the outbreak's retreat.In the year of retreat,the proportion of spruce in the forest ranged between 26%and 36%in most of the outbreak areas.The disturbance dynamics manifested a transition from the emergence of new tree mortality spots in the early outbreak phase to their short-range expansion,suggesting density-dependent changes in bark beetle dispersal during the studied period.The core disturbance zone,pinpointed in 2022,covered an area of 9,000 km^(2) and experienced a 38%loss in forest cover.Within this area,forest fragmentation increased significantly,leading to a greater forest patch complexity and reduced connectivity among the patches.The presented findings can serve as a glimpse into the future for other European regions,revealing the potential impacts of natural disturbances amplified by climate change.
基金supported by JASSO(Japan Student Services Organization)DPP Grant 2016(Faculty of Forestry,UGM)
文摘The chemical compositions of the dichloromethane extracts of inner and outer barks from six Pinus species(P.elliotii,P.oocarpa,P.caribeae,P.merkusii,P.montezumae,and P.insularis) grown in Indonesia were investigated by GC and GC–MS.Generally,the amounts of extractive contents were higher in the inner bark than in the outer bark except for P.merksuii.Fatty acids,monoterpenes,sesquiterpenes,resin acids,triterpenoids,and steroids were detected and quantified.Inner and outer barks differed not only in content of these compounds but also in their composition.Fatty acids and alcohols were the major classes of lipophilic compounds in the outer bark of P.caribeae, P.insularis,and P.montezumae.Steroids and triterpenoids were the dominant compounds identified in the inner bark of P.elliotii,P.insularis,and P.merkusii.Resin acids were the most abundant group in the inner bark of P.oocarpa whereas monoterpenes and sesquiterpenes were recorded in minor quantities in both bark layers of all species.
基金The National Natural Science Foundation of China (No. 30370283), the CAS Orientation Project (No. KSCX2-SW-120KSCX2-SW-133) and the Natural Science Foundation of Guangdong Province (No. 04002306)
文摘Barks of Pinus massoniana collected from two polluted sites, Qujiang and Xiqiaoshan, and from the relatively clean site Dinghushan were used to evaluate the pollution indication by the determination of their acidity and conductivity. The acidity of the inner and outer barks from the polluted sites was significantly higher than those from the clean site, suggesting that the acidity of the bark occurred in concurrent with the air pollution. The significant lower pH values of the outer bark than the inner bark collected from all sites indicated that the outer bark was more sensitive than the inner bark in response to acid pollution, implying that the outer bark is more preferable when used as indication of atmospheric acid pollution. The conductivities of the inner barks differed significantly among the three sites, with higher values at the clean site. However, the significant differences were not observed among these sites. Furthermore, the pH values for the inner and outer barks were not correlated with the conductivity, which did not coincide with some other studies.
基金Supported by National Key Technology R&D Program,No.2012BAI30B02
文摘AIM To investigate the protective effects of Foeniculum vulgare root bark (FVRB), a traditional Uyghur medicine, against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. METHODS Mice were randomly divided into eight groups (n = 20 each). Except for the normal control group, mice in the rest groups were intraperitoneally injected (i.p.) with 0.1% CCl4-olive oil mixture at 10 mL/kg twice a week to induce liver fibrosis. After 4 wk, mice were treated concurrently with the 70% ethanol extract of FVRB (88, 176, 352 and 704 mg/kg, respectively) daily by oral gavage for 4 wk to evaluate its protective effects. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), hexadecenoic acid (HA), laminin (LN), glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) in liver tissues were measured. Hematoxylin-eosin (H and E) staining and Masson trichrome (MT) staining were performed to assess histopathological changes in the liver. The expression of transforming growth factor beta 1 (TGF-beta 1), matrix metalloprotein 9 (MMP-9) and metallopeptidase inhibitor 1 (TIMP-1) was detected by immunohistochemical analysis. Additionally, TGF-beta 1 and alpha-smooth muscle actin (alpha-SMA) protein expression was measured by Western blot. RESULTS A significant reduction in serum levels of AST, ALT, TG, HA and LN was observed in the FVRB-treated groups, suggesting that FVRB displayed hepatoprotective effects. Also, the depletion of GSH, SOD, and MDA accumulation in liver tissues was suppressed by FVRB. The expression of TGF-beta 1, MMP-9 and TIMP-1 determined by immunohistochemistry was markedly reduced in a dose-dependent manner by FVRB treatment. Furthermore, protective effects of FVRB against CCl4-induced liver injury were confirmed by histopathological studies. Protein expression of TGF-beta 1 and alpha-SMA detected by Western blot was decreased by FVRB treatment. CONCLUSION Our results indicate that FVRB may be a promising agent against hepatic fibrosis and its possible mechanisms are inhibiting lipid peroxidation and reducing collagen formation in liver tissue of liver fibrosis mice.
基金Supported by Faculty of Science,Rajshahi University,Bangladesh(No.662-5/52/UGC/Science(2)/2010)
文摘Objective:To evaluate the antitumor activity of Manilkara zapota(M.zapota) L.stem bark against Ehrlich ascites carcinoma(EAC) in Swiss albino mice.Methods:The in vivo antitumour activity of the ethyl acetate extract of stem bark of M.zapota L.(EASM) was evaluated at 50,100 and 200 mg/kg bw against EAC using mean survival time.After administration of the extract of M.zapota,viable EAC cell count and body weight in the EAC tumour hosts were observed.The animal was also observed for improvement in the haematological parameters(e.g.,heamoglobin content,red and white blood cells count and differential cell count) after EASM treatment. Results:Intraperitoneal administration of EASM reduced viable EAC cells,increased the survival lime,and restored altered haematological parameters.Significant efficacy was observed for EASM at 100 mg/kg dose(P<0.05).Conclusions:It can be concluded that the elhyl acetate extract of stem bark of M.zapota L.possesses significant antitumour activity.