Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domai...Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domain wall, depending on the propagation direction, were observed under an external magnetic field. When the domain walls propagate in the opposite direction along the long axis of the nanostrip, the Walker breakdown fields as well as the average velocities are different. The asymmetric landscape of demagnetization energies, which arises from the trapezoidal geometry, is the main origin of the asymmetric propagation behavior. Furthermore, a trapezoid-cross-section nanostrip will become a nanotube if it is rolled artificially along its long axis, and thus a two-dimensional transverse domain wall will become a three-dimensional one. Interestingly, it is found that the asymmetric behaviors observed in two-dimensional nanostrips with trapezoidal cross section are similar with some dynamic properties occurring in three-dimensional nanotubes.展开更多
Magnetic Barkhausen Noise (MBN) is a phenomenon of electromagnetic energy emission due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an alternating magneti...Magnetic Barkhausen Noise (MBN) is a phenomenon of electromagnetic energy emission due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an alternating magnetic field. According to Faraday’s law of electromagnetic induction, the noise can be received by the coil attached to the surface of the material being magnetized and the noise carries the message of the characteristics of the material such as stresses, hardness, phase content, etc. Based on the characteristic of the noise, research about the relationship between the welding stresses in the welding assembly and the noise, the fatigue damage of the plate structure and the noise, and the influence of heat treatment and the variation of phase content to the noise are carried out in this paper.展开更多
The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addit...The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addition of Ti-C on the c-axis orientation and the magnetization process of hot-rolled Nd-Fe-B-Ti-C melt-spun ribbons. The addition of Ti-C promotes the c-axis orientation and high coercivity in the ribbons. Elemental mapping suggests a uniform elemental distribution; however, an uneven distribution of Ti was observed in an enlarged grain with Ti-enriched points inside the grain. The reversal domains that nucleated at the Ti-enriched point inside the grain cause low coercivity.展开更多
Magnetic Barkhausen noise ( MBN) is a phenomenon of electromagnetic energy due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an alternating magnetic fiel...Magnetic Barkhausen noise ( MBN) is a phenomenon of electromagnetic energy due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an alternating magnetic fields. According to Faraday's law of electromagnetic induction, the noise can be received by the coil attached to the surface of the material being magnetized and the noise carries the message of the characteristics of the material such as stresses, hardness, phase content, etc. Based on the characteristic of the noise, researching about the relationship between the residual stress in the welding assembly and the noise are carried out. Furthermore, data process is performed by RMS (Root Mean Square) equation and Power Spectrum analysis.展开更多
Electric field(E-field)control of magnetism based on magnetoelectric coupling is one of the promising approaches for manipulating the magnetization with low power consumption.The evolution of magnetic domains under in...Electric field(E-field)control of magnetism based on magnetoelectric coupling is one of the promising approaches for manipulating the magnetization with low power consumption.The evolution of magnetic domains under in-situ E-fields is significant for the practical applications in integrated micro/nano devices.Here,we report the vector analysis of the E-field-driven antiparallel magnetic domain evolution in FeCoSiB/PMN-PT(011)multiferroic heterostructures via in-situ quantitative magneto-optical Kerr microscope.It is demonstrated that the magnetic domains can be switched to both the 0°and 180°easy directions at the same time by E-fields,resulting in antiparallel magnetization distribution in ferromagnetic/ferroelectric heterostructures.This antiparallel magnetic domain evolution is attributed to energy minimization with the uniaxial strains by E-fields which can induce the rotation of domains no more than 90°.Moreover,domains can be driven along only one or both easy axis directions by reasonably selecting the initial magnetic domain distribution.The vector analysis of magnetic domain evolution can provide visual insights into the strain-mediated magnetoelectric effect,and promote the fundamental understanding of electrical regulation of magnetism.展开更多
A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteris...A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteristics of PHE,the magnetization switches sharply in an angular range of the external field for two steps of 90° domain wall displacement and one step of 180°domain wall displacement near the easy axis,respectively.However,the magnetization reversal process near the hard axis is completed by only one step of 90° domain wall displacement and then rotates coherently.The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement.Furthermore,the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.展开更多
Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball s...Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball scribing, root mean square of MBN (MBNrms) of CGO electrical steel increased 9.8% with 4 mm scribing spacing at 1.2 T, and that of HGO electrical steel apparently decreased 17.3% with 16 mm scribing spacing at 1.2 T. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress, primary magnetic domain space of grain-oriented electrical steel becomes smaller, which reflects as a variation of MBN in the macroscopic magnetic properties. Through correlation formula derivation of MBNrms and equilibrium distance between domain walls, effect of domain refinement on grain-oriented electrical steel was also interpreted, and optimum equilibrium distance between domain walls was determined.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFB0903700 and 2017YFB0903702)Yichang Government Fund(Grant No.A19-402-a05)+1 种基金the Korea Research Foundation(NRF)(Grant No.2018R1A2B3009569)Korea Basic Science Institute(KBSI)(Grant No.D39614).
文摘Field-driven magnetic domain wall propagation in ferromagnetic nanostrips with trapezoidal cross section has been systematically investigated by means of micromagnetic simulation. Asymmetric dynamic behaviors of domain wall, depending on the propagation direction, were observed under an external magnetic field. When the domain walls propagate in the opposite direction along the long axis of the nanostrip, the Walker breakdown fields as well as the average velocities are different. The asymmetric landscape of demagnetization energies, which arises from the trapezoidal geometry, is the main origin of the asymmetric propagation behavior. Furthermore, a trapezoid-cross-section nanostrip will become a nanotube if it is rolled artificially along its long axis, and thus a two-dimensional transverse domain wall will become a three-dimensional one. Interestingly, it is found that the asymmetric behaviors observed in two-dimensional nanostrips with trapezoidal cross section are similar with some dynamic properties occurring in three-dimensional nanotubes.
文摘Magnetic Barkhausen Noise (MBN) is a phenomenon of electromagnetic energy emission due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an alternating magnetic field. According to Faraday’s law of electromagnetic induction, the noise can be received by the coil attached to the surface of the material being magnetized and the noise carries the message of the characteristics of the material such as stresses, hardness, phase content, etc. Based on the characteristic of the noise, research about the relationship between the welding stresses in the welding assembly and the noise, the fatigue damage of the plate structure and the noise, and the influence of heat treatment and the variation of phase content to the noise are carried out in this paper.
文摘The relation between the microstructure, observed using an electron probe microanalyzer, and the domain structure, observed using a Kerr microscope, was established to evaluate the effects of hot rolling and the addition of Ti-C on the c-axis orientation and the magnetization process of hot-rolled Nd-Fe-B-Ti-C melt-spun ribbons. The addition of Ti-C promotes the c-axis orientation and high coercivity in the ribbons. Elemental mapping suggests a uniform elemental distribution; however, an uneven distribution of Ti was observed in an enlarged grain with Ti-enriched points inside the grain. The reversal domains that nucleated at the Ti-enriched point inside the grain cause low coercivity.
文摘Magnetic Barkhausen noise ( MBN) is a phenomenon of electromagnetic energy due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an alternating magnetic fields. According to Faraday's law of electromagnetic induction, the noise can be received by the coil attached to the surface of the material being magnetized and the noise carries the message of the characteristics of the material such as stresses, hardness, phase content, etc. Based on the characteristic of the noise, researching about the relationship between the residual stress in the welding assembly and the noise are carried out. Furthermore, data process is performed by RMS (Root Mean Square) equation and Power Spectrum analysis.
基金supported by the National Key R&D Program of China(Grant No.2018YFB0407601)the National Natural Science Foundation of China(Grant Nos.91964109,62071374,and 51802248)+1 种基金the National 111 Project of China(Grant No.B14040)the Fundamental Research Funds for the Central Universities(Grant No.xxj022020008).
文摘Electric field(E-field)control of magnetism based on magnetoelectric coupling is one of the promising approaches for manipulating the magnetization with low power consumption.The evolution of magnetic domains under in-situ E-fields is significant for the practical applications in integrated micro/nano devices.Here,we report the vector analysis of the E-field-driven antiparallel magnetic domain evolution in FeCoSiB/PMN-PT(011)multiferroic heterostructures via in-situ quantitative magneto-optical Kerr microscope.It is demonstrated that the magnetic domains can be switched to both the 0°and 180°easy directions at the same time by E-fields,resulting in antiparallel magnetization distribution in ferromagnetic/ferroelectric heterostructures.This antiparallel magnetic domain evolution is attributed to energy minimization with the uniaxial strains by E-fields which can induce the rotation of domains no more than 90°.Moreover,domains can be driven along only one or both easy axis directions by reasonably selecting the initial magnetic domain distribution.The vector analysis of magnetic domain evolution can provide visual insights into the strain-mediated magnetoelectric effect,and promote the fundamental understanding of electrical regulation of magnetism.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB921801 and 2012CB933102)the National Natural Science Foundation of China(Grant Nos.11374350,11034004,11274361,11274033,11474015,and 61227902)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20131102130005)
文摘A planar Hall effect(PHE) is introduced to investigate the magnetization reversal process in single-crystalline iron film grown on a Si(001) substrate.Owing to the domain structure of iron film and the characteristics of PHE,the magnetization switches sharply in an angular range of the external field for two steps of 90° domain wall displacement and one step of 180°domain wall displacement near the easy axis,respectively.However,the magnetization reversal process near the hard axis is completed by only one step of 90° domain wall displacement and then rotates coherently.The magnetization reversal process mechanism near the hard axis seems to be a combination of coherent rotation and domain wall displacement.Furthermore,the domain wall pinning energy and uniaxial magnetic anisotropy energy can also be derived from the PHE measurement.
基金The financial support of the National Natural Science Foundation of China(Nos.51174057 and 51274062)the National High Technology Research and Development Program (No.2012AA03A503)
文摘Effect of ball scribing on magnetic Barkhausen noise (MBN) of conventional grain-oriented (CGO) and high- permeability grain-oriented (HGO) electrical steel was investigated. The results showed that after ball scribing, root mean square of MBN (MBNrms) of CGO electrical steel increased 9.8% with 4 mm scribing spacing at 1.2 T, and that of HGO electrical steel apparently decreased 17.3% with 16 mm scribing spacing at 1.2 T. Through the formation and development of free magnetic poles and secondary magnetic domains due to compressive stress, primary magnetic domain space of grain-oriented electrical steel becomes smaller, which reflects as a variation of MBN in the macroscopic magnetic properties. Through correlation formula derivation of MBNrms and equilibrium distance between domain walls, effect of domain refinement on grain-oriented electrical steel was also interpreted, and optimum equilibrium distance between domain walls was determined.