期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China 被引量:17
1
作者 FANG Xiangmin WANG Qingli +4 位作者 ZHOU Wangming ZHAO Wei WEI Yawei NIU Lijun DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第3期297-306,共10页
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and mic... Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area. 展开更多
关键词 land use soil organic carbon (SOC) microbial biomass carbon (MBC) carbon mineralization basal respiration ChangbaiMountains
下载PDF
Four years of free-air CO_2 enrichment enhance soil C concentrations in a Chinese wheat field 被引量:2
2
作者 ZHONG Shuang LIANG Wenju +2 位作者 LOU Yilai LI Qi ZHU Jianguo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1221-1224,共4页
Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass... Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study. 展开更多
关键词 dissolved organic C free air CO2 enrichment microbial biomass C N fertilization soil basal respiration soil organic C
下载PDF
Toxicity of cadmium to soil microbial biomass and its activity:Effect of incubation time on Cd ecological dose in a paddy soil 被引量:1
3
作者 廖敏 罗运阔 +1 位作者 赵小敏 黄昌勇 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期324-330,共7页
Cadmium (Cd) is ubiquitous in the human environment and has toxic effect on soil microbial biomass or its activity, including microbial biomass carbon (Cmic), dehydrogenase activity (DHA) and basal respiration (BR), e... Cadmium (Cd) is ubiquitous in the human environment and has toxic effect on soil microbial biomass or its activity, including microbial biomass carbon (Cmic), dehydrogenase activity (DHA) and basal respiration (BR), etc., Cmic, DHA, BR were used as bioindicators of the toxic effect of Cd in soil. This study was conducted to determine the effects of Cd on soil microbial biomass and its activity in a paddy soil. The inhibition of microbial biomass and its activity by different Cd concentrations was described by the kinetic model (M1) and the sigmoid dose-response model (M2) in order to calculate three ecological doses of Cd: ED50, ED10 and ED5. Results showed that M2 was better fit than M1 for describing the ecological toxicity dose effect of cadmium on soil microbial biomass and its activity in a paddy soil. M2 for ED values (mg/kg soil) of Cmic, DHA, BR best fitted the measured paddy soil bioindicators. M2 showed that all ED values (mg/kg) increased in turn with increased incubation time. ED50, ED10 and ED5 of Cmic with M2 were increased in turn from 403.2, 141.1, 100.4 to 1000.7, 230.9, 144.8, respectively, after 10 d to 60 d of incubation. ED50, ED10 and ED5 of DHA with M2 increased in turn from 67.6, 6.2, 1.5 to 101.1, 50.9, 41.0, respectively, after 10 d to 60 d of incubation. ED50, ED10 and ED5 of BR with M2 increased in turn from 149.7, 6.5, 1.8 to 156.5, 50.8, 35.5, respectively, after 10 d to 60 d of incubation. So the ecological dose increased in turn with increased incubation time for M2 showed that toxicity of cadmium to soil microbial biomass and its activity was decreased with increased incubation time. 展开更多
关键词 CADMIUM Soil microbial biomass basal respiration Dehydrogenase activity Ecological dose Paddy soil
下载PDF
Soil Microbial Population in the Vicinity of the Bean Caper(Zygophyllum dumosum)Root Zone in a Desert System 被引量:1
4
作者 I.SHMUELI G.BARNESS Y.STEINBERGER 《Pedosphere》 SCIE CAS CSCD 2007年第6期758-765,共8页
The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllura duraosura) perennial desert shr... The aim of the current study was to gain a better understanding of the changes in soil microbial biomass and basal respiration dynamics in the vicinity of the bean caper (Zygophyllura duraosura) perennial desert shrub and the inter-shrub sites. Microbial biomasses as well as basal respiration were found to be significantly greater in the soil samples taken beneath the Z. duraosura shrubs than from the inter-shrub sampling sites, with no differences between the two sampling layers (0-10 and 10-20 cm) throughout the study period. However, seasonal changes were observed due to autumn dew formation, which significantly affected microbial biomass and basal respiration in the upper-layer inter-shrub locations. The calculated metabolic coefficient (qCO2) revealed significant differences between the two sampling sites as well as between the two soil layers, elucidating the abiotic effect between the sites throughout the study period. The substrate availability index was found to significantly demonstrate the differences between the two sites, elucidating the significant contribution of Z. duraosura in food source availability and in moderating harsh abiotic components. The importance of basal microbial parameters and the derived indices as tools demonstrated the importance and need for basic knowledge in understanding plant-soil interactions determined by an unpredictable and harsh desert environment. 展开更多
关键词 basal respiration DESERT microbial biomass root zone soil
下载PDF
Environmental drivers of soil microbial activity and diversity along an elevational gradient
5
作者 PENG Si-li GE Zhi-wei +1 位作者 LIU Gang-cai MAO Ling-feng 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1336-1347,共12页
Microbial functional and structural patterns and drivers along elevational gradients have recently received increasing attention.In this study,we examined soil bacterial and fungal community diversity,compositions,and... Microbial functional and structural patterns and drivers along elevational gradients have recently received increasing attention.In this study,we examined soil bacterial and fungal community diversity,compositions,and microbial activities(i.e.,soil basal respiration and extracellular enzyme activities)across an elevational gradient from 1148 m to 2080 m(consists of six elevations)in the Yuanmou dry-hot valley located in Southwest China.Environmental factors,including soil temperature,moisture content,pH,soil organic carbon(SOC),total nitrogen(TN),the C/N ratio,total phosphorus(TP),and aboveground plant biomass were also determined.The results showed that soil bacterial alpha diversity(Shannon index)was unaffected by elevation,whereas fungal alpha diversity firstly increased significantly from 1148 m to 1539 m but did not increase further at higher elevations.Bacterial Shannon index was significantly correlated with SOC,whereas fungal Shannon index was remarkably associated with soil temperature.Microbial activity,beta diversities and community composition varied with elevation,but none of them showed a consistent trend.Monte Carlo test revealed that soil moisture followed by temperature,and pH,were the primary drivers of bacterial community composition.Soil fungal community composition significantly depended on soil moisture.Overall,our study suggested bacterial diversity and composition were determined by climatic(moisture and temperature)and edaphic properties(SOC and pH),while fungal diversity and composition were structured mainly by climatic factors.These findings may contribute to a better understanding of microbial responses along elevational gradients in this semi-arid region. 展开更多
关键词 BACTERIA FUNGI Composition and diversity basal respiration Enzyme activity
下载PDF
Impact of Simulated Drought Stress on Soil Microbiology, and Nematofauna in a Native Shrub + Millet Intercropping System in Senegal
6
作者 Sidy Diakhaté Ndeye-Yacine Badiane-Ndour +6 位作者 Hassna Founoune-Mboup Sally Diatta Abdoulaye Fofana Fall Rebecca R. Hernandez Laurent Cournac Richard Dick Lydie Chapuis-Lardy 《Open Journal of Soil Science》 2016年第12期189-203,共15页
Drought stress strongly affects soil biota and impairs crop production, which under climate change will be exacerbated in semi-arid cropping regions such as the Sahel. Hence soil management systems are needed that can... Drought stress strongly affects soil biota and impairs crop production, which under climate change will be exacerbated in semi-arid cropping regions such as the Sahel. Hence soil management systems are needed that can buffer against drought. In West Africa, field studies have found intercropping of millet with the native shrub Piliostigma reticulatum improves soil-plant-water relations, microbial activity and diversity, and suppress parasitic nematodes, which can significantly increase crop yield. However, little information is available on its beneficial or negative effects on soils or crops during water stress. Therefore, the objective was to investigate the impact of P. reticulatum in moderating water stress effects on soil properties and pearl millet (Pennisetum glaucum [L.] R. Br.) productivity. In the greenhouse, soil chemical and microbial properties and millet growth were investigated with a factorial experiment of varying levels of soil moisture (favorable, moderately stressed, or severely stressed water conditions) that was imposed for 55 days on soils containing sole P. reticulatum or millet, or millet + P. reticulatum. The results showed that the presence of P. reticulatum did not buffer soils against water stress in relation to soil chemical and microbial properties measured at the end of the experiment. Severe water stress did significantly decrease the height, number of leaves, and aboveground biomass of millet plants. Additionally, respiration, nematofauna trophic structure and abundance decreased as water stress increased. Lastly, bacterial feeders and plant parasitic nematodes were the most sensitive to severe water stress while fungal feeding nematodes remained unaffected. The results suggested that the intensity of water stress had more negative effects on soil basal respiration rather than soil microbial biomass. 展开更多
关键词 Sub-Saharan Africa Shrub-Based Cropping System Pennisetum glaucum (L.) R. Br. Water Stress Climate Change NEMATODE basal respiration Greenhouse Experiment
下载PDF
Microbial Attributes of Infested Soil Suppressive to Bacterial Wilt by Bokashi Amendments
7
作者 Mariana R.Fontenelle Carlos A.Lopes +5 位作者 Carlos E.P.Lima Daiane C.Soares Luciana R.B.Silva Daniel B.Zandonadi Ronessa B.Souza Antonio W.Moita 《Agricultural Sciences》 2015年第10期1239-1247,共9页
Bacterial wilt, caused by Ralstonia solanacearum, is a major tomato disease in tropical and sub-tropical regions. It is difficult to be managed, since no single measure confers significant contribution for disease con... Bacterial wilt, caused by Ralstonia solanacearum, is a major tomato disease in tropical and sub-tropical regions. It is difficult to be managed, since no single measure confers significant contribution for disease control. Among the cultural practices available for disease management, bokashi provides nutrients to the plants, increasing the microbial biomass, improving the quality of the soil and, in some cases, protecting plants against diseases. In this work, we evaluated the effect of three different bokashis (Embrapa—BE;poultry—BP and cattle—BC) in two soils artificially and naturally infested with R. solanacearum, on the suppression of bacterial wilt in tomato. Disease control is discussed upon measurements on the contents of microbial biomass carbon (MBC), on total organic carbon (TOC), on basal respiration (BR), on metabolic coefficient (qCO2) and on microbial coefficient (qMIC). The experiment was implemented in greenhouse, with completely randomized design and factorial arrangement of treatments 2 × 3 (two soils × three bokashis). Disease suppression, assessed through wilt incidence 20 and 30 days after transplanting, was better observed in the naturally infested soil, where BP and BE were more efficient in controling the disease. TOC contents were higher in the artificially infested soil compared to that naturally infested, whereas the qMIC presented higher value for the naturally infested soil, which had greater contribution of MBC. Higher rates of BR and qCO2 were observed for the naturally infested soil with BC, probably indicating high plant stress caused by the disease in this treatment. Moreover, a high and positive correlation coefficient was found between the variables qCO2 and the number of infected plants at 30 days after transplanting. In the artificially infested soil, a negative correlation was found between the number of infected plants at 20 days after transplanting and TOC. 展开更多
关键词 basal respiration Disease Control Microbial Biomass Ralstonia solanacearum Solanum lycopersicum
下载PDF
Salinity effects on soil organic carbon and its labile fractions,and nematode communities in irrigated farmlands in an arid region,northwestern China 被引量:4
8
作者 YongZhong Su TingNa Liu +1 位作者 XueFen Wang Rong Yang 《Research in Cold and Arid Regions》 CSCD 2016年第1期46-53,共8页
The effects of salinity on soil organic carbon (SOC) and its labile fractions including microbial biomass carbon (MBC) and easily oxidation organic carbon (EOC), basal soil respiration, and soil nematode communi... The effects of salinity on soil organic carbon (SOC) and its labile fractions including microbial biomass carbon (MBC) and easily oxidation organic carbon (EOC), basal soil respiration, and soil nematode community in the Fluvents, an oasis in an arid region of northwestern China were investigated. Five sites were selected which had a salinity gradient with different groundwater table from 1.0 m to 4.0 m. Soils were sampled at the 0~0 cm plough layer from 25 irrigated fields of five sites and electrical conductivity was measured in the saturation paste extracts (ECe). Soils were categorized into five salinity levels: (1) non-saline, (2) very slightly saline, (3) slightly saline, (4) moderately saline, and (5) strongly saline according to the values of ECe. The results show that SOC and total nitrogen concentration, cation exchange capacity (CEC), and the concentrations of labile organic fractions (MBC, EOC), and basal soil respiration decreased significantly with increasing ECe. The relationships between ECe and MBC, EOC and basal soil respiration were best described by power functions. Slight and moderate salinity had no significant impact on soil nematode abundance, but excessive salt accumulation led to a marked decline in soil nematode community diversity and abundance. Soil salinity changed soil nematode trophic groups and bacterivores were the most abundant trophic groups in salt-affected soils. Further study is necessary to identify the response of soil microbial processes and nematode community dynamics to soil salinity. 展开更多
关键词 SALINITY soil organic carbon labile organic carbon basal soil respiration soil nematode
下载PDF
Soil Microbial and Enzymatic Activities Across a Chronosequence of Chinese Pine Plantation Development on the Loess Plateau of China 被引量:21
9
作者 YUAN Bing-Cheng YUE Dong-Xia 《Pedosphere》 SCIE CAS CSCD 2012年第1期1-12,共12页
Successional and seasonal effects on soil microbial and enzymatic properties were studied in Chinese pine (Pinus tabulaeformis) plantations in an age sequence of 3-, 7-, 13-, 21- and 28-year-old in northern Ziwuling... Successional and seasonal effects on soil microbial and enzymatic properties were studied in Chinese pine (Pinus tabulaeformis) plantations in an age sequence of 3-, 7-, 13-, 21- and 28-year-old in northern Ziwuling region in the middle of Loess Plateau, China. The results indicated that plantation age and season affected soil microbial and enzymatic parameters significantly. Soil organic C, total N, microbial biomass C, microbial quotient, basal respiration, dehydrogenase, N-α-benzoyl-L-argininamide (BAA)-protease, urease and β-glucosidase increased quickly and tended to be highest at PF21 (21-year plantation), thereafter they remained nearly at a constant level, whereas the metabolic quotient (qCO2) showed an initial increase and then decreased gradually. Measures of these soil properties showed significant seasonal fluctuations except for organic C and total N, which were found to be relatively stable throughout the study period, and the seasonal distributions were autumn 〉 spring 〉 summer 〉 winter for microbial biomass C, microbial quotient, dehydrogenase, and β-glucosidase; autumn 〉 summer 〉 spring 〉 winter for BAA-protease and urease; and summer 〉 autumn 〉 spring 〉 winter for basal respiration and qCO2. Significant season x age interaction was observed for biomass C, basal respiration, dehydrogenase and BAA-protease. 展开更多
关键词 DEHYDROGENASE metabolic quotient microbial biomass SEASONALITY soil basal respiration
原文传递
Reduced tillage with residue retention improves soil labile carbon pools and carbon lability and management indices in a seven-year trial with wheat-mung bean-rice rotation 被引量:3
10
作者 Rafeza BEGUM Mohammad M.R.JAHANGIR +3 位作者 Mohammad JAHIRUDDIN Mohammad Rafiqul ISLAM Shaikh M.BOKHTIAR Khandakar R.ISLAM 《Pedosphere》 SCIE CAS CSCD 2022年第6期916-927,共12页
Soil total organic carbon(TOC)is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services.Research reports on the dynamics of TOC as a consequence of so... Soil total organic carbon(TOC)is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services.Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions,where microbial carbon(C)loss is high,are very limited.The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics(quantitative and qualitative)with respect to lability and stratification under an annual wheat-mung bean-rice cropping sequence.Composite soil samples were collected at 0-15 and 15-30 cm depths from a three-replicate split-plot experiment with tillage treatment as the main plots and crop residue levels as the sub-plots.The tillage treatments included conventional tillage(CT)and strip tillage(ST).Residue levels were high residue level(HR),30%of the plant height,and low residue level(LR),15%.In addition to TOC,soil samples were analyzed for particulate organic C(POC),permanganate oxidizable C(POXC),basal respiration(BR),specific maintenance respiration rate(qCO_(2)),microbial biomass C(MBC),potentially mineralizable C(PMC),and TOC lability and management indices.The ST treatment significantly increased the TOC and labile C pools at both depths compared with the CT treatment,with the effect being more pronounced in the surface layer.The HR treatment increased TOC and labile C pools compared with the LR treatment.The ST+HR treatment showed significant increases in MBC,metabolic quotient(qR),C pool index(CPI),C lability index(CL_(I)),and C management index(CMI),indicating improved and efficient soil biological activities in such systems compared with the CT treatment.Similarly,the stratification values,a measure of soil quality improvement,for POC and MBC were>2,indicating improved soil quality in the ST+HR treatment compared with the CT treatment.The ST+HR treatment not only significantly increased the contents of TOC pools,but also their stocks.The CMI was correlated with qCO_(2),BR,and MBC,suggesting that these are sensitive indicators of early changes in TOC.The qCO_(2) was significantly higher in the CT+LR treatment and negatively correlated with MBC and CMI,indicating a biologically stressed soil condition in this treatment.Our findings highlight that medium-term reduced tillage with HR management has profound consequences on soil TOC quality and dynamics as mediated by alterations in labile C pools. 展开更多
关键词 basal respiration carbon management index carbon stratification particulate organic carbon permanganate oxidizable carbon total organic carbon
原文传递
Soil microbial attributes along a chronosequence of Scots pine(Pinus sylvestris var. mongolica) plantations in northern China 被引量:3
11
作者 Xiaodong YAO Wenjing ZENG +1 位作者 Hui ZENG Wei WANG 《Pedosphere》 SCIE CAS CSCD 2020年第4期433-442,共10页
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav... Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs. 展开更多
关键词 soil microbial metabolism quotient(gCO2) soil basal respiration soil depth soil microbial biomass soil organic matter dynamics soil potential extracellular enzyme activity stand age
原文传递
Responses of butachlor degradation and microbial properties in a riparian soil to the cultivation of three different plants 被引量:2
12
作者 Changming Yang Mengmeng Wang +1 位作者 Haiyan Chen Jianhua Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第9期1437-1444,共8页
A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites aust... A pot experiment was conducted to investigate the biodegradation dynamics and related microbial ecophysiological responses to butachlor addition in a riparian soil planted with different plants such as Phragmites australis,Zizania aquatica,and Acorus calamus.The results showed that there were significant differences in microbial degradation dynamics of butachlor in the rhizosphere soils among the three riparian plants.A.calamus displays a significantly higher degradation efficiency of butachlor in the rhizosphere soils,as compared with Z.aquatica and P.australis.Half-life time of butachlor degradation in the rhizospheric soils of P.australis,Z.aquatica,and A.calamus were 7.5,9.8 and 5.4 days,respectively.Residual butachlor concentration in A.calamus rhizosphere soil was 35.2% and 21.7% lower than that in Z.aquatica and P.australis rhizosphere soils,respectively,indicating that A.calamus showed a greater improvement effect on biodegradation of butachlor in rhizosphere soils than the other two riparian plant.In general,microbial biomass and biochemical activities in rhizosphere soils were depressed by butachlor addition,despite the riparian plant types.However,rhizospheric soil microbial ecophysiological responses to butachlor addition significantly (P 0.05) differed between riparian plant species.Compared to Z.aquatica and P.australis,A.calamus showed significantly larger microbial number,higher enzyme activities and soil respiration rates in the rhizosphere soils.The results indicated that A.calamus have a better alleviative effect on inhibition of microbial growth due to butachlor addition and can be used as a suitable riparian plant for detoxifying and remediating butachlor contamination from agricultural nonpoint pollution. 展开更多
关键词 riparian wetland BUTACHLOR rhizospheric degradation soil microflora enzymatic activities basal respiration
原文传递
Characteristics of soil nutrients and their relationship with soil microbial properties in Artemisia sacrorum communities in the loess hilly region 被引量:2
13
作者 Lijuan Song Weiyang Liu +2 位作者 Huifeng Wu Tian Gao Wenfang Hao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第4期127-134,共8页
Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The result... Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The results showed that with an increase in the number of growth years,soil microbial biomass carbon and nitrogen contents as well as soil phosphatase and urease activities initially decreased and then increased in the A.sacrorum communities.The soil organic carbon,organic nitrogen,and total nitrogen contents as well as soil respiration rate showed an increasing trend and reached a maximum at age(a)37.The soil available phosphorus content first decreased and then increased,with the lowest level observed at 18 a.By contrast,soil available potassium initially increased and then decreased.Soil microbial biomass carbon had a significant positive correlation with soil organic carbon,total nitrogen and organic nitrogen,while soil respiration had a significant positive correlation with organic nitrogen,soil phosphatase and organic carbon.Soil respiration had a highly significant positive correlation with organic carbon and total nitrogen,while soil phosphatase had a highly significant positive correlation with total nitrogen and organic nitrogen.In the A.sacrorum communities,the soil organic carbon and total nitrogen contents were mainly affected by soil respiration,soil available potassium content was mainly affected by soil urease activity,and soil organic nitrogen content was mainly affected by soil phosphatase activity.These findings indicate that soil basal respiration,urease activity and phosphatase activity were the major microbial factors affecting the characteristics of the soil nutrients in the A.sacrorum communities.In conclusion,the natural restoration process of A.sacrorum communities can enhance soil microbial activity and improve soil quality. 展开更多
关键词 loess hilly soil nutrients soil microbial biomass soil enzyme activities soil basal respiration rate
原文传递
Influences of Catch Crop and Its Incorporation Time on Soil Carbon and Carbon-Related Enzymes
14
作者 Anna PIOTROWSKA-DLUGOSZ Edward WILCZEWSKI 《Pedosphere》 SCIE CAS CSCD 2015年第4期569-579,共11页
Catch crops that are cultivated for green manure play an important role in improving soil properties. A 3-year field experi- ment was conducted to investigate the effect of catch crop (pea, Pisum sativum L.) managem... Catch crops that are cultivated for green manure play an important role in improving soil properties. A 3-year field experi- ment was conducted to investigate the effect of catch crop (pea, Pisum sativum L.) management, i.e., incorporation of catch crop in October/November (autumn) and March (spring), and without catch crop (control), on soil organic carbon (SOC), microbial biomass carbon (MBC) and the activities of carbon (C)-cycle enzymes, including cellulase (Cel), β-glucosidase (Glu) and invertase (Inv). Additionally, soil total nitrogen (TN) and pHKcl were investigated. The catch crop was cultivated from August to October each year during 2008-2010. Soil samples were collected from the field of spring barley (Hordeum vulgate L.) that had been grown after the catch crop. Soil samples for microbial activity determination were taken in March, May, June and August in 2009, 2010 and 2011, while SOC and TN contents as well as pHKc1 were determined in March and August. The chemical properties studied did not show significant changes as influenced by the experimental factors. The use of catch crop significantly increased the MBC content and the activities of C-cycle enzymes compared to the control. When the catch crop was incorporated in spring, a significantly higher MBC content was noted in March and May compared to autumn incorporation. Moreover, the spring incorporation of the catch crop significantly increased the Glu activity (except March), while the activities of Cel and Inv as well as the rate of soil basal respiration were usually unaffected by the time of catch crop incorporation. Greater microbial biomass and higher enzyme activities in the catch crop-treated soil, compared to the control, indicated that the application of the catch crop as a green manure could be recommended as a promising technique to increase the biological activity of the soil. Since there was no significant effect or no consistent results were obtained related to the time of catch crop incorporation, both spring and autumn applications can be recommended as a management tool to improve the status of soil properties during the growth of a subsequent crop. 展开更多
关键词 CELLULASE Β-GLUCOSIDASE INVERTASE microbial biomass carbon soil basal respiration
原文传递
Effects of Different Types of Sludge on Soil Microbial Properties:A Field Experiment on Degraded Mediterranean Soils
15
作者 D.TARRASóN G.OJEDA +1 位作者 O.ORTIZ J.M.ALCAIZ 《Pedosphere》 SCIE CAS CSCD 2010年第6期681-691,共11页
The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewate... The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. In a short time, the plots of both loamy sand and loam soils amended with TDS showed the highest microbial basal respiration (loam soil: P < 0.01; loamy sand soil: P < 0.001) and carbon mineralization coefficient (loam soil: P < 0.01; loamy sand soil: P < 0.001). Furthermore, on loamy sand soil, the plots amended with TDS showed the highest microbial metabolic quotient (qCO 2 ) (P < 0.05). This study revealed that the addition of sludge caused transient non-equilibrium effects on almost all soil microbial properties. However, there were no differences one year later because the remaining organic carbon was stable and quite similar in all treatments. These results may have practical implications for the rehabilitation of degraded soils. 展开更多
关键词 basal respiration composted sludge soil microbial biomass thermally dried sludge
原文传递
Developing a USLE cover and management factor(C)for forested regions of southern China
16
作者 Conghui Li Lili Lin +4 位作者 Zhenbang Hao Christopher J.Post Zhanghao Chen Jian Liu Kunyong Yu 《Frontiers of Earth Science》 SCIE CAS CSCD 2020年第3期660-672,共13页
The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of ... The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of this model by coupling the leaf area index(LAI)and soil basal respiration(SBR)to more accurately estimate a soil erosion map for a typical region with red soil in Hetian,Fujian Province,China.The spatial distribution of the LAI was obtained using the normalized difference vegetation index and was consistent with the LAI observed in the field(R^2=0.66).The spatial distribution of the SBR was obtained using the Carnegie-Ames-Stanford Approach model and verified by soil respiration field observations(R^2=0.51).Correlation analyses and regression models suggested that the LAI and SBR could reasonably reflect the structure of the forest canopy and understory vegetation,respectively.Finally,the C-factor was reconstructed using the proposed forest vegetation structure factor(Cs),which considers the effect of the forest canopy and shrub and litter layers on reducing rainfall erosion.The feasibility of this new method was thoroughly verified using runoff plots(R2=0.55).The results demonstrated that Cs may help local governments understand the vital role of the structure of the vegetation layer in limiting soil erosion and provide a more accurate large-scale quantification of the C-factor for soil erosion. 展开更多
关键词 leaf area index remote sensing soil basal respiration forest vegetation structure factor vegetation layer structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部