The effects of 3 chairside polishing kits and mechanical brushing on the surface roughness of 3 different acrylic denture base resins were compared. Acrylic denture base resins (auto-polymerizing, heat-polymerizing, ...The effects of 3 chairside polishing kits and mechanical brushing on the surface roughness of 3 different acrylic denture base resins were compared. Acrylic denture base resins (auto-polymerizing, heat-polymerizing, injected heat-polymerizing resins) were examined after a tungsten carbide bur, and after chairside polishing using 3 polishing kits and pumice. The specimens were subjected to mechanical brushing using a wear tester to simulate 30 000 strokes of brushing. The surface roughness of the acrylic denture base resin specimens was measured using a contact pro-filometer. After the test, the random polished acrylic resins were evaluated by scanning electron mi-croscopy (SEM) and atomic force microscopy (AFM). Acrylic denture base resins polished using the 3 types of polishing kits had a smoother surface than those finished with the tungsten carbide bur (p〈0.05). The surface of the resin polished by a TC cutter exceeded the Ra of 0.2 μm (p〈0.05). The auto-polymerizing resin showed a significantly higher surface roughness than the heat-polymerizing resin and injected heat-polymerizing resin (p〉0.05). In the case of polishing step wise, there was almost no change in surface roughness after brushing (p〉0.05).展开更多
Objective: Infection control protocols dictate the disinfection of dentures. There are no products available which are designed for the specific use of disinfecting dentures. The objective of this study was to investi...Objective: Infection control protocols dictate the disinfection of dentures. There are no products available which are designed for the specific use of disinfecting dentures. The objective of this study was to investigate the impact of chemical disinfectants on elastic modulus, flexural strength and color stability of denture base resins. Methods: 256 specimens from four acrylic denture base resins were manufactured. Two cold-curing denture base resins: PalaXpress (Heraeus Kulzer, Hanau, Germany), Futura Gen (Schuetz Dental, Roßbach, Germany) and two heat-curing denture base resins: Paladon 65 (Heraeus Kulzer, Hanau, Germany), FuturAcryl 2000 (Schuetz Dental, Roßbach, Germany) were used. Three chemical disinfecting agents were tested: Impresept, D050 Instru-Gen, Stammopur DR. Specimens were stored in distilled water and in chemical disinfecting agents. They were divided randomly into groups. E-Modulus and flexural strength were measured using the three-point bending test. Color changes (ΔE) were determined spectrophotometrically. Results: The disinfection agents showed no significant influence on the E-modulus compared to distilled water (Acrylic vs. distilled water from (Futura Gen) 2688.80 ± 230.78 vs. 2766.60 ± 91.22 MPa to (PalaXpress) 3004.20 ± 26.40 vs. 2851.00 ± 95.23 MPa). Flexural strength after storage in distilled water and disinfection did not differ significantly (Acrylic vs. distilled water from (Paladon65) 27.28 ± 1.30 vs. 28.42 ± 0.84 N/mm2, (p > 0.05) to (PalaXpress) 30.88 ± 0.25 vs. 29.68 ± 0.79 N/mm2, p < 0.001). Disinfection caused a significant color change with Impresept of Paladon 65 (p ≤ 0.001), FuturaAcryl 2000 with Stammopur DR and D 050 Instru-Gen (p ≤ 0.001). Conclusions: The investigated disinfection agents did not influence elastic modulus and flexural strength of denture base resins negatively. ΔE-values were in a range of 1 to 2. Thus, the detected color changes may be marginal. Clinical relevance: Single use disinfections are feasible for acrylic dentures regarding to elastic modulus and flexural strength.展开更多
To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was...To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.展开更多
A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester un...A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester under various temperature conditions. It was found that the dynamic tribological performance of materials has a good consistency with the dynamic evolution of worn surfaces. At lower temperatures, the friction coefficient and wear rate were constant, resulted from the stable worn surfaces. At higher temperatures, the friction coefficient increased gradually, while the wear rate decreased, due to the increasing contact area and Fe concentration. A fade occurred above 250 ℃, which can be explained by the degradation of binders.展开更多
Peptide analogs of salmon calcitonin (sCT) were synthesized by using Fmoc-based chemistry on MBHA resins. Salmon calcitonin was modified by 1) cysteines at positions 1 and 7 were replaced by valine and alanine respect...Peptide analogs of salmon calcitonin (sCT) were synthesized by using Fmoc-based chemistry on MBHA resins. Salmon calcitonin was modified by 1) cysteines at positions 1 and 7 were replaced by valine and alanine respectively to result in open chain analogs, 2) the glycine at position 30 was replaced by alanine, D-alanine and sarcosine respectively, and 3) some residues were deleted besides the above two modifications. A modified two-step deprotection / cleavage procedure, in which a solvent of TFA / TMSBr / thioanisole / EDT / m-cresol combines with HF cleavage, was adopted in SPPS.展开更多
Solid organic matter is an important constituent not only in coal, but also in black shale-hosted ore deposits. The reliable recognition and quantification of organic carbon—as well as its microfabric relation to ass...Solid organic matter is an important constituent not only in coal, but also in black shale-hosted ore deposits. The reliable recognition and quantification of organic carbon—as well as its microfabric relation to associated inorganic minerals—plays a crucial role in characterization by scanning electron microscopy-based image analysis. However, the use of conventional epoxy resin in the preparation of grain mounts does not allow for recognition of solid organic carbon compounds. In this study we illustrate that the use of iodized epoxy resin readily overcomes this bottleneck. Best results are obtained with an addition of 15 wt% iodoform to the epoxy resin. With process samples of black shale-hosted polymetallic Kupferschiefer-type ore as a case study, it is shown that recognition and quantification of solid organic carbon are easily achieved and that tangible parameters such as particle and grain sizes, association and liberation for ore and gangue minerals can be determined in the presence of solid organic matter. Due to the inherent uncertainty of the exact chemical composition of the kerogen contained in Kupferschiefer, it was not possible to attain exact comparability between chemical Corg assays and assays calculated from MLA data. However, the results are still found to closely agree with one another. The strength of iodized resin lies in its ability to distinguish organic matter with high hydration ratios in addition to the easy integration in sample preparation. It could therefore be an attractive supplement in the analyses of other raw materials containing complex organic-matter.展开更多
Basic properties of a silica-based octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) extraction resin (CMPO/SiO2-P) was investigated.Adsorption behavior for some rare earth elements (RE) which are con...Basic properties of a silica-based octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) extraction resin (CMPO/SiO2-P) was investigated.Adsorption behavior for some rare earth elements (RE) which are constituents of high level liquid waste (HLLW) and the long-term stability of the extraction resin in nitric acid solution were examined.The CMPO extraction resin was significantly stable in 3 mol·L?1 HNO3 solution at 50oC.Furthermore,the RE(III) were efficiently separated from non-adsorptive fission product (FP) elements such as Sr(II) in a column experiment using a highly nitric acid solution.The separation behaviors of the elements are considered to result from the difference in their adsorption and elution selectivity based on the complex formation with CMPO.There was no strong dependency of RE(III) separation efficiency on feed solution flow rate.Only from the perspectives of the acid-resistant behavior of CMPO extraction resin and the elution kinetics for the metal ions with the extraction resin,the CMPO extraction resin can be used in the modified MAREC process for HLLW partitioning.展开更多
文摘The effects of 3 chairside polishing kits and mechanical brushing on the surface roughness of 3 different acrylic denture base resins were compared. Acrylic denture base resins (auto-polymerizing, heat-polymerizing, injected heat-polymerizing resins) were examined after a tungsten carbide bur, and after chairside polishing using 3 polishing kits and pumice. The specimens were subjected to mechanical brushing using a wear tester to simulate 30 000 strokes of brushing. The surface roughness of the acrylic denture base resin specimens was measured using a contact pro-filometer. After the test, the random polished acrylic resins were evaluated by scanning electron mi-croscopy (SEM) and atomic force microscopy (AFM). Acrylic denture base resins polished using the 3 types of polishing kits had a smoother surface than those finished with the tungsten carbide bur (p〈0.05). The surface of the resin polished by a TC cutter exceeded the Ra of 0.2 μm (p〈0.05). The auto-polymerizing resin showed a significantly higher surface roughness than the heat-polymerizing resin and injected heat-polymerizing resin (p〉0.05). In the case of polishing step wise, there was almost no change in surface roughness after brushing (p〉0.05).
文摘Objective: Infection control protocols dictate the disinfection of dentures. There are no products available which are designed for the specific use of disinfecting dentures. The objective of this study was to investigate the impact of chemical disinfectants on elastic modulus, flexural strength and color stability of denture base resins. Methods: 256 specimens from four acrylic denture base resins were manufactured. Two cold-curing denture base resins: PalaXpress (Heraeus Kulzer, Hanau, Germany), Futura Gen (Schuetz Dental, Roßbach, Germany) and two heat-curing denture base resins: Paladon 65 (Heraeus Kulzer, Hanau, Germany), FuturAcryl 2000 (Schuetz Dental, Roßbach, Germany) were used. Three chemical disinfecting agents were tested: Impresept, D050 Instru-Gen, Stammopur DR. Specimens were stored in distilled water and in chemical disinfecting agents. They were divided randomly into groups. E-Modulus and flexural strength were measured using the three-point bending test. Color changes (ΔE) were determined spectrophotometrically. Results: The disinfection agents showed no significant influence on the E-modulus compared to distilled water (Acrylic vs. distilled water from (Futura Gen) 2688.80 ± 230.78 vs. 2766.60 ± 91.22 MPa to (PalaXpress) 3004.20 ± 26.40 vs. 2851.00 ± 95.23 MPa). Flexural strength after storage in distilled water and disinfection did not differ significantly (Acrylic vs. distilled water from (Paladon65) 27.28 ± 1.30 vs. 28.42 ± 0.84 N/mm2, (p > 0.05) to (PalaXpress) 30.88 ± 0.25 vs. 29.68 ± 0.79 N/mm2, p < 0.001). Disinfection caused a significant color change with Impresept of Paladon 65 (p ≤ 0.001), FuturaAcryl 2000 with Stammopur DR and D 050 Instru-Gen (p ≤ 0.001). Conclusions: The investigated disinfection agents did not influence elastic modulus and flexural strength of denture base resins negatively. ΔE-values were in a range of 1 to 2. Thus, the detected color changes may be marginal. Clinical relevance: Single use disinfections are feasible for acrylic dentures regarding to elastic modulus and flexural strength.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 30471351).
文摘To investigate value in use of liquefied wood-based resin applications in molding material, Chinese fir (Cunninghamia lanceolata) and poplar (Populus tomentosa) wood meal were liquefied in phenol. The reactant was co-condensed with formaldehyde to obtain liquefied wood-based resin. For this paper, we investigated the characterization of the resin and its application in molding material. The result shows that the basic properties of liquefied wood-based resin were satisfactory; the bonding strength of plywood prepared with liquefied Chinese fir and liquefied poplar resin can reach 1.54 and 1.00 MPa, respectively. The compression strengths of the molding material prepared with two kinds of liquefied wood resin were 73.01 and 73.58 MPa, almost the same as that of PF resin molding material. The limiting volume swelling of molding material made with liquefied Chinese resin and liquefied poplar resin were 8.5% and 8.3%, thickness swelling rates of water absorption were 3.3% and 4.2%, and the maximum weight ratios of water absorption were 25.9% and 26.2%, respectively. The soil burial test result shows that the weight loss rate of the molding materials made with liquefied Chinese resin and liquefied poplar resin were 8.3% and 9.1% and that of the PF resin molding material was 7.9%. After the soil internment test, the reduction ratio of compression strength of the two kinds of molding material achieved 16.9% and 17.7%, while that of the PF resin molding material was 15.4%. The test results of wood fungi inoculation on the three surfaces of the molding material indicate the breeding rate of molding material prepared with liquefied Chinese resin and liquefied poplar resin were at level 4 and that of PF resin molding material was at level 1 of the ISO standard.
基金Funded by the National High-Tech R&D Program of China(863 Program)(SS2015AA042502)
文摘A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester under various temperature conditions. It was found that the dynamic tribological performance of materials has a good consistency with the dynamic evolution of worn surfaces. At lower temperatures, the friction coefficient and wear rate were constant, resulted from the stable worn surfaces. At higher temperatures, the friction coefficient increased gradually, while the wear rate decreased, due to the increasing contact area and Fe concentration. A fade occurred above 250 ℃, which can be explained by the degradation of binders.
文摘Peptide analogs of salmon calcitonin (sCT) were synthesized by using Fmoc-based chemistry on MBHA resins. Salmon calcitonin was modified by 1) cysteines at positions 1 and 7 were replaced by valine and alanine respectively to result in open chain analogs, 2) the glycine at position 30 was replaced by alanine, D-alanine and sarcosine respectively, and 3) some residues were deleted besides the above two modifications. A modified two-step deprotection / cleavage procedure, in which a solvent of TFA / TMSBr / thioanisole / EDT / m-cresol combines with HF cleavage, was adopted in SPPS.
文摘Solid organic matter is an important constituent not only in coal, but also in black shale-hosted ore deposits. The reliable recognition and quantification of organic carbon—as well as its microfabric relation to associated inorganic minerals—plays a crucial role in characterization by scanning electron microscopy-based image analysis. However, the use of conventional epoxy resin in the preparation of grain mounts does not allow for recognition of solid organic carbon compounds. In this study we illustrate that the use of iodized epoxy resin readily overcomes this bottleneck. Best results are obtained with an addition of 15 wt% iodoform to the epoxy resin. With process samples of black shale-hosted polymetallic Kupferschiefer-type ore as a case study, it is shown that recognition and quantification of solid organic carbon are easily achieved and that tangible parameters such as particle and grain sizes, association and liberation for ore and gangue minerals can be determined in the presence of solid organic matter. Due to the inherent uncertainty of the exact chemical composition of the kerogen contained in Kupferschiefer, it was not possible to attain exact comparability between chemical Corg assays and assays calculated from MLA data. However, the results are still found to closely agree with one another. The strength of iodized resin lies in its ability to distinguish organic matter with high hydration ratios in addition to the easy integration in sample preparation. It could therefore be an attractive supplement in the analyses of other raw materials containing complex organic-matter.
文摘Basic properties of a silica-based octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO) extraction resin (CMPO/SiO2-P) was investigated.Adsorption behavior for some rare earth elements (RE) which are constituents of high level liquid waste (HLLW) and the long-term stability of the extraction resin in nitric acid solution were examined.The CMPO extraction resin was significantly stable in 3 mol·L?1 HNO3 solution at 50oC.Furthermore,the RE(III) were efficiently separated from non-adsorptive fission product (FP) elements such as Sr(II) in a column experiment using a highly nitric acid solution.The separation behaviors of the elements are considered to result from the difference in their adsorption and elution selectivity based on the complex formation with CMPO.There was no strong dependency of RE(III) separation efficiency on feed solution flow rate.Only from the perspectives of the acid-resistant behavior of CMPO extraction resin and the elution kinetics for the metal ions with the extraction resin,the CMPO extraction resin can be used in the modified MAREC process for HLLW partitioning.