In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theor...In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theories,constructing the transformation between different frameworks is crucial.Various transformations of a Fuzzy Membership Function(FMF)into a Basic Belief Assignment(BBA)have been proposed,where the transformations based on uncertainty maximization and minimization can determine the BBA without preselecting the focal elements.However,these two transformations that based on uncertainty optimization emphasize the extreme cases of uncertainty.To avoid extreme attitudinal bias,a trade-off or moderate BBA with the uncertainty degree between the minimal and maximal ones is more preferred.In this paper,two moderate transformations of an FMF into a trade-off BBA are proposed.One is the weighted average based transformation and the other is the optimization-based transformation with weighting mechanism,where the weighting factor can be user-specified or determined with some prior information.The rationality and effectiveness of our transformations are verified through numerical examples and classification examples.展开更多
How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measu...How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
D-S evidence theory,as a general framework for reasoning with uncertainty,allows combining pieces of evidence from different information sources to derive a degree of belief function that is a type of fuzzy measure.Ho...D-S evidence theory,as a general framework for reasoning with uncertainty,allows combining pieces of evidence from different information sources to derive a degree of belief function that is a type of fuzzy measure.However,the mass assignments given by unknown information sources are disordered.How to measure the difference between the mass assignments has aroused people’s interest.In this paper,inspired by the information volume,a novel distance-based measure is proposed to measure the difference between mass assignments.The method can refine the uncertain information given by experts and compare the refined information to obtain the difference between mass assignments.At the same time,it is verified that the measure not only meets the properties of distance,but also proves the superiority of the proposed Information Volume Distance(IVD)through simulation experiments.Meanwhile,in the process of information fusion,the reliability of each source could be quantified through IVD.Therefore,based on IVD,a new multi-source information algorithm is proposed to solve the problem of multi-source information fusion.Moreover,algorithm is applied to decision-making problem and compare with other methods to verify the effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(No.61671370)Postdoctoral Science Foundation of China(No.2016M592790)Postdoctoral Science Research Foundation of Shaanxi Province,China(No.2016BSHEDZZ46)。
文摘In information fusion,the uncertain information from different sources might be modeled with different theoretical frameworks.When one needs to fuse the uncertain information represented by different uncertainty theories,constructing the transformation between different frameworks is crucial.Various transformations of a Fuzzy Membership Function(FMF)into a Basic Belief Assignment(BBA)have been proposed,where the transformations based on uncertainty maximization and minimization can determine the BBA without preselecting the focal elements.However,these two transformations that based on uncertainty optimization emphasize the extreme cases of uncertainty.To avoid extreme attitudinal bias,a trade-off or moderate BBA with the uncertainty degree between the minimal and maximal ones is more preferred.In this paper,two moderate transformations of an FMF into a trade-off BBA are proposed.One is the weighted average based transformation and the other is the optimization-based transformation with weighting mechanism,where the weighting factor can be user-specified or determined with some prior information.The rationality and effectiveness of our transformations are verified through numerical examples and classification examples.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2013AA013801)the National Natural Science Foundation of China(61174022+4 种基金61573290)the open funding project of State Key Laboratory of Virtual Reality Technology and Systemsthe Beihang University(BUAA-VR-14KF-02)the General Research Program of Natural Science of Sichuan Provincial Department of Education(14ZB0322)the Self-financing Program of State Ethnic Affairs Commission of China(14SCZ014)
文摘How to efficiently measure the distance between two basic probability assignments(BPAs) is an open issue. In this paper, a new method to measure the distance between two BPAs is proposed, based on two existing measures of evidence distance. The new proposed method is comprehensive and generalized. Numerical examples are used to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.62003280)Chongqing Talents:Exceptional Young Talents Project(No.cstc2022ycjhbgzxm0070)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0531)Chongqing Overseas Scholars Innovation Program(No.cx2022024).
文摘D-S evidence theory,as a general framework for reasoning with uncertainty,allows combining pieces of evidence from different information sources to derive a degree of belief function that is a type of fuzzy measure.However,the mass assignments given by unknown information sources are disordered.How to measure the difference between the mass assignments has aroused people’s interest.In this paper,inspired by the information volume,a novel distance-based measure is proposed to measure the difference between mass assignments.The method can refine the uncertain information given by experts and compare the refined information to obtain the difference between mass assignments.At the same time,it is verified that the measure not only meets the properties of distance,but also proves the superiority of the proposed Information Volume Distance(IVD)through simulation experiments.Meanwhile,in the process of information fusion,the reliability of each source could be quantified through IVD.Therefore,based on IVD,a new multi-source information algorithm is proposed to solve the problem of multi-source information fusion.Moreover,algorithm is applied to decision-making problem and compare with other methods to verify the effectiveness.