This study prepared 17 strains of Lentinula edodes, including wild and cultivated strains as materials, and statistically analyzed the ratios of spores from different aspects via mating types' analysis and the OWE-SO...This study prepared 17 strains of Lentinula edodes, including wild and cultivated strains as materials, and statistically analyzed the ratios of spores from different aspects via mating types' analysis and the OWE-SOJ technique. The results from this study first systematically identified skewed expected distribution of mating-type factors segregation in Lentinula edodes spores has commonly statistical meanings in wild and cultivated strains. Genetic analysis of positive and negative parental-recombined fruiting showed that the nuclear type of F1 progeny spores among those strains segregated through theoretical distribution mainly depended on the combined state of parental dikaryons, and the predominant spores were those with the mating type identical to the dikaryotic parent, indicating that the genetic basis of segregation distortion of spores is different from that of protoplast monokaryons in which the B factor takes predominant responsibility for that phenomenon, and it cooperates A factor with B factor to influence the ratio of spores.展开更多
文摘This study prepared 17 strains of Lentinula edodes, including wild and cultivated strains as materials, and statistically analyzed the ratios of spores from different aspects via mating types' analysis and the OWE-SOJ technique. The results from this study first systematically identified skewed expected distribution of mating-type factors segregation in Lentinula edodes spores has commonly statistical meanings in wild and cultivated strains. Genetic analysis of positive and negative parental-recombined fruiting showed that the nuclear type of F1 progeny spores among those strains segregated through theoretical distribution mainly depended on the combined state of parental dikaryons, and the predominant spores were those with the mating type identical to the dikaryotic parent, indicating that the genetic basis of segregation distortion of spores is different from that of protoplast monokaryons in which the B factor takes predominant responsibility for that phenomenon, and it cooperates A factor with B factor to influence the ratio of spores.