Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
In this paper,we give the homotopy perturbation renormalization group method,this is a new method for turning point problem.Using this method,the independent variables are introduced by transformation without introduc...In this paper,we give the homotopy perturbation renormalization group method,this is a new method for turning point problem.Using this method,the independent variables are introduced by transformation without introducing new related variables and no matching is needed.The WKB approximation method problem can be solved.展开更多
A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental e...A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.展开更多
A new first-order optimality condition for the basis pursuit denoise (BPDN) problem is derived. This condition provides a new approach to choose the penalty param- eters adaptively for a fixed point iteration algori...A new first-order optimality condition for the basis pursuit denoise (BPDN) problem is derived. This condition provides a new approach to choose the penalty param- eters adaptively for a fixed point iteration algorithm. Meanwhile, the result is extended to matrix completion which is a new field on the heel of the compressed sensing. The numerical experiments of sparse vector recovery and low-rank matrix completion show validity of the theoretic results.展开更多
2022 The paper seeks to demonstrates the likelihood of embedding a 3D gaze point on a 3D visual field,the visual field is inform of a game console where the user has to play from one level to the other by overcoming o...2022 The paper seeks to demonstrates the likelihood of embedding a 3D gaze point on a 3D visual field,the visual field is inform of a game console where the user has to play from one level to the other by overcoming obstacles that will lead them to the next level.Complex game interface is sometimes difficult for the player to progress to next level of the game and the developers also find it difficult to regulate the game for an average player.The model serves as an analytical tool for game adaptations and also players can track their response to the game.Custom eye tracking and 3D object tracking algorithms were developed to enhance the analysis of the procedure.This is a part of the contributions to user interface design in the aspect of visual transparency.The development and testing of human computer interaction uses and application is more easily investigated than ever,part of the contribution to this is the embedding of 3-D gaze point on a 3-D visual field.This could be used in a number of applications,for instance in medical applications that includes long and short sightedness diagnosis and treatment.Experiments and Test were conducted on five different episodes of user attributes,result show that fixation points and pupil changes are the two most likely user attributes that contributes most significantly in the performance of the custom eye tracking algorithm the study.As the advancement in development of eye movement algorithm continues user attributes that showed the least likely appearance will prove to be redundant.展开更多
In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of...In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance.展开更多
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip...To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.展开更多
The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical si...The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1.展开更多
In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local suppo...In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.展开更多
In this paper, rock mass is regarded as anisotropic clastic units and the partial differential equation of subsidence has been testified. The solution about homogeneous anisotropy has been obtained. The existence of i...In this paper, rock mass is regarded as anisotropic clastic units and the partial differential equation of subsidence has been testified. The solution about homogeneous anisotropy has been obtained. The existence of inflection point offset in subsidence formula has been proved. Lastly, the relevant influence factors about the offset of inflection point have been simply discussed.展开更多
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘In this paper,we give the homotopy perturbation renormalization group method,this is a new method for turning point problem.Using this method,the independent variables are introduced by transformation without introducing new related variables and no matching is needed.The WKB approximation method problem can be solved.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2014AA123103)
文摘A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.
基金supported by the National Natural Science Foundation of China(No.61271014)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301110003)the Graduated Students Innovation Fund of Hunan Province(No.CX2012B238)
文摘A new first-order optimality condition for the basis pursuit denoise (BPDN) problem is derived. This condition provides a new approach to choose the penalty param- eters adaptively for a fixed point iteration algorithm. Meanwhile, the result is extended to matrix completion which is a new field on the heel of the compressed sensing. The numerical experiments of sparse vector recovery and low-rank matrix completion show validity of the theoretic results.
文摘2022 The paper seeks to demonstrates the likelihood of embedding a 3D gaze point on a 3D visual field,the visual field is inform of a game console where the user has to play from one level to the other by overcoming obstacles that will lead them to the next level.Complex game interface is sometimes difficult for the player to progress to next level of the game and the developers also find it difficult to regulate the game for an average player.The model serves as an analytical tool for game adaptations and also players can track their response to the game.Custom eye tracking and 3D object tracking algorithms were developed to enhance the analysis of the procedure.This is a part of the contributions to user interface design in the aspect of visual transparency.The development and testing of human computer interaction uses and application is more easily investigated than ever,part of the contribution to this is the embedding of 3-D gaze point on a 3-D visual field.This could be used in a number of applications,for instance in medical applications that includes long and short sightedness diagnosis and treatment.Experiments and Test were conducted on five different episodes of user attributes,result show that fixation points and pupil changes are the two most likely user attributes that contributes most significantly in the performance of the custom eye tracking algorithm the study.As the advancement in development of eye movement algorithm continues user attributes that showed the least likely appearance will prove to be redundant.
基金supported by the National Natural Science Foundation of China (Grant No.20576071)
文摘In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225702,42077235 and 41722209).
文摘To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.
文摘The subsea anchor piles of offshore wind power floating platform structures are mainly subjected to uplift and horizontal loads, and this paper focuses on the case of horizontal loads. A three-dimensional numerical simulation study of the horizontal pullout characteristics of wind power suction anchor piles in clay layers was carried out to reveal the horizontal movement state of the anchor piles during horizontal pile pullout, the range of pile depth at the pullout point where the horizontal movement is achieved (referred to as the horizontal movement range), the relationship between the pullout load and the ultimate load during the horizontal movement, and the optimal location of the pullout point for the horizontal movement. The results show that at certain pull-out points, the anchor pile produces an overall horizontal movement state under suitable horizontal pull-out loads. The depth of the pile pull-out point for horizontal movement is in the middle and lower part of the pile, i.e. 14.2 m to 14.5 m. The horizontal pull-out load of 24,000 kN at a depth of 14.5 m within the pile horizontal movement range of 14.2m to 14.5 m is the maximum ultimate horizontal pull-out load;the optimum pull-out point depth is 14.5 m at 0.275 L (L is the pile length). For each pull-out point of the anchor pile in horizontal movement, the horizontal pull-out load in horizontal movement and the horizontal ultimate pull-out load existed and it was found that the two values were not exactly the same, the values were compared and it was found that at the optimum pull-out point the value of the ultimate horizontal pull-out load/horizontal pull-out load in horizontal movement tended to 1.
基金Project (No. 10572128) supported by the National Natural ScienceFoundation of China
文摘In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.
文摘In this paper, rock mass is regarded as anisotropic clastic units and the partial differential equation of subsidence has been testified. The solution about homogeneous anisotropy has been obtained. The existence of inflection point offset in subsidence formula has been proved. Lastly, the relevant influence factors about the offset of inflection point have been simply discussed.