期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modeling, Analysis and Simulation of a High-Efficiency Battery Control System
1
作者 Mohammed Ayad Alkhafaji Yunus Uzun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期709-732,共24页
This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system.The three-ph... This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage system.The three-phase half-controlled rectifier has been designed to control and convert the AC power into DC power.In addition,two types of direct current converters have been used in this paper which are a buck and bidirectional DC/DC converters.These systems adjust the output voltage to be lower or higher than the input voltage.In the buck converters,the main switch operates in conduction or cut-off mode and is triggered by a Pulse-Width Modulated(PWM)signal.The output and input voltage levels ratio are used to calculate thePWMsignal’s duty cycle.Therefore,the duty cycle indicates the operation mode of the converter in steady-state operation.In this study,we analyze and control of a buck converter with the PWM signal.Besides,the bidirectional DC/DC converter has been achieved and optimized by PI control methods to control the battery charging and discharging modes.The simulation has been applied via the Matlab/Simulink environment.The results show the activity of each part of the designed circuits starting from the converters and the battery control system in charge and discharge modes. 展开更多
关键词 RECTIFIER buck converter bidirectional DC/DC converter PI controller Pulse-WidthModulation(PWM) battery controller
下载PDF
A novel inertia emulator to reduce the rate of change of frequency for power systems with solar PV and battery energy storage
2
作者 R Raja Nivedha Jai Govind Singh Weerakorn Ongsakul 《Clean Energy》 EI CSCD 2023年第4期873-884,共12页
Energy access,climate change and public health issues are some major drivers for the need for renewable sources.However,most renewable sources,excluding large hydro,have zero or negligible rotational inertia,which is ... Energy access,climate change and public health issues are some major drivers for the need for renewable sources.However,most renewable sources,excluding large hydro,have zero or negligible rotational inertia,which is critical to stabilizing the power system after contingency.Therefore,this paper proposes a droop-based inertia emulator to reduce the rate of change of frequency and frequency deviations.The robustness of the controller is analysed by applying various uncertainties and disturbances of power system components that were carried out using DIgSILENT PowerFactory simulations.The obtained results are compared with existing literature and the desired performance shows an improvement in the rate of change of frequency of 34.78%for an IEEE 6-bus system,24.32%for a 12-bus system and 18%for a 39-bus system. 展开更多
关键词 control of the rate of change of frequency low-inertia power system inertia emulator control rate of change of frequency impact of solar PV on frequency control impact of battery storage on inertia and frequency control
原文传递
Variable Universe Fuzzy Control for Battery Equalization 被引量:10
3
作者 ZHENG Jian CHEN Jian OUYANG Quan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第1期325-342,共18页
In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equaliz... In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equalization. Based on the bi-directional modified Cuk converter, variable universe fuzzy controllers are proposed to adaptively maintain equalizing currents between cells of a serially connected battery pack in varying conditions. The inputs to the fuzzy controller are the voltage differences and the average voltages of adjacent cell pairs. A large voltage difference requires large equalizing current while adjacent cells both with low/high voltages can only stand small discharge/charge currents. Compared with the conventional fuzzy control method, the proposed method differs in that the universe can shrink or expand as the effects of the input changes. This is important as the input may change in a small range. Simulation results demonstrate that the proposed variable universe fuzzy control method has fast equalization speed and good adaptiveness for varying conditions. 展开更多
关键词 Cell equalization lithium-ion battery variable universe fuzzy control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部