This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co...This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.展开更多
The 5th generation mobile communications aims at connecting everything and future Internet of Things(IoT)will get everything smartly connected.To realize it,there exist many challenges.One key challenge is the battery...The 5th generation mobile communications aims at connecting everything and future Internet of Things(IoT)will get everything smartly connected.To realize it,there exist many challenges.One key challenge is the battery problem for small devices,such as sensors or tags.Batteryless backscatter,also referred to as or battery-free backscatter,is a new potential technology to address this problem.One early and typical type of batteryless backscatter is ambient backscatter.Generally,batteryless backscatter utilizes environmental wireless signals to enable battery-free devices to communicate with each other.These devices first harvest energy from ambient wireless signals and then backscatter these signals so as to transmit their own information.This paper reviews the current studies about batteryless backscatter,including various backscatter schemes and theoretical works,and then introduces open problems for future research.展开更多
This paper proposes a batteryless sensing and computational device to collect and process electrocardiography(ECG)signals for monitoring heart rate variability(HRV).The proposed system comprises of a passive UHF radio...This paper proposes a batteryless sensing and computational device to collect and process electrocardiography(ECG)signals for monitoring heart rate variability(HRV).The proposed system comprises of a passive UHF radio frequency identification(RFID)tag,an extreme low power microcontroller,a low-power ECG circuit,and a radio frequency(RF)energy harvester.The microcontroller and ECG circuits consume less power of only~30μA and~3 mA,respectively.Therefore,the proposed RF harvester operating at frequency band of 902 MHz~928 MHz can sufficiently collect available energy from the RFID reader to supply power to the system within a maximum distance of~2 m.To extract R-peak of the ECG signal,a robust algorithm that consumes less time processing is also developed.The information of R-peaks is stored into an Electronic Product Code(EPC)Class 1st Generation 1st compliant ID of the tag and read by the reader.This reader is functioned to collected the R-peak data with sampling rate of 100ms;therefore,the user application can monitor fully range of HRV.The performance of the proposed system shows that this study can provide a good solution in paving the way to new classes of healthcare applications.展开更多
射频识别(RFID,radio frequency identification)技术自被提出以来,因其便捷高效的独特优势逐渐被广泛应用于交通、物流、工业和商业等领域。RFID标签作为存储可识别数据的载体,在RFID系统中具有至关重要的作用,越来越多的功能与模块被...射频识别(RFID,radio frequency identification)技术自被提出以来,因其便捷高效的独特优势逐渐被广泛应用于交通、物流、工业和商业等领域。RFID标签作为存储可识别数据的载体,在RFID系统中具有至关重要的作用,越来越多的功能与模块被嵌入RFID标签,并发展成为不同应用领域的智能标签。近年来,随着物联网和各种新型反向散射技术的发展,无线无源智能标签逐渐兴起。无线无源智能标签应用无源反向散射技术,借助射频信号获取能量并传输信息。从RFID技术入手,简要介绍了RFID的发展历史和传统智能标签,比较了传统智能标签和无线无源智能标签的区别,总结了无线无源智能标签的优点,列举了其在不同领域的具体应用,并分析了当前面临的挑战性问题。展开更多
基金the NSF CCSS-2152638 and the IEN Center Grant from the Institute for Electronics and Nanotechnology at Georgia Tech.
文摘This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.
基金This paper is funded by Scientific Research Program of Beijing Municipal Commission of Education No.KM201910853003.
文摘The 5th generation mobile communications aims at connecting everything and future Internet of Things(IoT)will get everything smartly connected.To realize it,there exist many challenges.One key challenge is the battery problem for small devices,such as sensors or tags.Batteryless backscatter,also referred to as or battery-free backscatter,is a new potential technology to address this problem.One early and typical type of batteryless backscatter is ambient backscatter.Generally,batteryless backscatter utilizes environmental wireless signals to enable battery-free devices to communicate with each other.These devices first harvest energy from ambient wireless signals and then backscatter these signals so as to transmit their own information.This paper reviews the current studies about batteryless backscatter,including various backscatter schemes and theoretical works,and then introduces open problems for future research.
基金supported by FPT University,Hanoi,Vietnamand Nguyen Tat Thanh University,Ho Chi Minh City,Vietnam.
文摘This paper proposes a batteryless sensing and computational device to collect and process electrocardiography(ECG)signals for monitoring heart rate variability(HRV).The proposed system comprises of a passive UHF radio frequency identification(RFID)tag,an extreme low power microcontroller,a low-power ECG circuit,and a radio frequency(RF)energy harvester.The microcontroller and ECG circuits consume less power of only~30μA and~3 mA,respectively.Therefore,the proposed RF harvester operating at frequency band of 902 MHz~928 MHz can sufficiently collect available energy from the RFID reader to supply power to the system within a maximum distance of~2 m.To extract R-peak of the ECG signal,a robust algorithm that consumes less time processing is also developed.The information of R-peaks is stored into an Electronic Product Code(EPC)Class 1st Generation 1st compliant ID of the tag and read by the reader.This reader is functioned to collected the R-peak data with sampling rate of 100ms;therefore,the user application can monitor fully range of HRV.The performance of the proposed system shows that this study can provide a good solution in paving the way to new classes of healthcare applications.
文摘射频识别(RFID,radio frequency identification)技术自被提出以来,因其便捷高效的独特优势逐渐被广泛应用于交通、物流、工业和商业等领域。RFID标签作为存储可识别数据的载体,在RFID系统中具有至关重要的作用,越来越多的功能与模块被嵌入RFID标签,并发展成为不同应用领域的智能标签。近年来,随着物联网和各种新型反向散射技术的发展,无线无源智能标签逐渐兴起。无线无源智能标签应用无源反向散射技术,借助射频信号获取能量并传输信息。从RFID技术入手,简要介绍了RFID的发展历史和传统智能标签,比较了传统智能标签和无线无源智能标签的区别,总结了无线无源智能标签的优点,列举了其在不同领域的具体应用,并分析了当前面临的挑战性问题。