This paper discusses the problem of classifying a multivariate Gaussian random field observation into one of the several categories specified by different parametric mean models. Investigation is conducted on the clas...This paper discusses the problem of classifying a multivariate Gaussian random field observation into one of the several categories specified by different parametric mean models. Investigation is conducted on the classifier based on plug-in Bayes classification rule (PBCR) formed by replacing unknown parameters in Bayes classification rule (BCR) with category parameters estimators. This is the extension of the previous one from the two category cases to the multi-category case. The novel closed-form expressions for the Bayes classification probability and actual correct classification rate associated with PBCR are derived. These correct classification rates are suggested as performance measures for the classifications procedure. An empirical study has been carried out to analyze the dependence of derived classification rates on category parameters.展开更多
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ...Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.展开更多
Chinese meteorological satellite FY-1D can obtain global data from four spectral channels which include visible channel(0.58-0.68 μm) and infrared channels(0.84-0.89 μm,10.3-11.3 μm,11.5-12.5 μm).2366 snow and ice...Chinese meteorological satellite FY-1D can obtain global data from four spectral channels which include visible channel(0.58-0.68 μm) and infrared channels(0.84-0.89 μm,10.3-11.3 μm,11.5-12.5 μm).2366 snow and ice samples,2024 cloud samples,1602 land samples and 1648 water samples were selected randomly from Arctic imageries.Land and water can be detected by spectral features.Snow-ice and cloud can be classified by textural features.The classifier is Bayes classifier.By synthesizing five d ays classifying result of Arctic snow and ice cover area,complete Arctic snow and ice cover area can be obtained.The result agrees with NOAA/NESDIS IMS products up to 70%.展开更多
The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool cond...The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool condition for a.machining process to have superior quality and economic production.In the pre-sent study,fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique.Cutting force and vibration signals were acquired to monitor tool condition during machining.A set of four tooling conditions namely healthy,worn flank,broken insert and extended tool overhang have been considered for the study.The machine learning technique was applied to both vibration and cutting force signals.Discrete wavelet features of the signals have been extracted using discrete wavelet trans formation(DWT).This transformation represents a large dataset into approximation coeffcients which contain the most useful information of the dataset.Significant features,among features extracted,were selected using J48 decision tree technique.Clas-sification of tool conditions was carried out us ing Naive Bayes algorithm.A 10 fold cross validation was incorporated to test the validity of classifier.A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.展开更多
Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are ...Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are becoming increasingly accessible, due to the fast development of various social network services and websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is mainly determined by their social network relationships. Then, how to extend the classical NB method to social network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the NNB method is that it takes the network relationships into consideration. The computational efficiency makes the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.A real data example is also analyzed for illustration purpose.展开更多
文摘This paper discusses the problem of classifying a multivariate Gaussian random field observation into one of the several categories specified by different parametric mean models. Investigation is conducted on the classifier based on plug-in Bayes classification rule (PBCR) formed by replacing unknown parameters in Bayes classification rule (BCR) with category parameters estimators. This is the extension of the previous one from the two category cases to the multi-category case. The novel closed-form expressions for the Bayes classification probability and actual correct classification rate associated with PBCR are derived. These correct classification rates are suggested as performance measures for the classifications procedure. An empirical study has been carried out to analyze the dependence of derived classification rates on category parameters.
文摘Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.
文摘Chinese meteorological satellite FY-1D can obtain global data from four spectral channels which include visible channel(0.58-0.68 μm) and infrared channels(0.84-0.89 μm,10.3-11.3 μm,11.5-12.5 μm).2366 snow and ice samples,2024 cloud samples,1602 land samples and 1648 water samples were selected randomly from Arctic imageries.Land and water can be detected by spectral features.Snow-ice and cloud can be classified by textural features.The classifier is Bayes classifier.By synthesizing five d ays classifying result of Arctic snow and ice cover area,complete Arctic snow and ice cover area can be obtained.The result agrees with NOAA/NESDIS IMS products up to 70%.
文摘The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool condition for a.machining process to have superior quality and economic production.In the pre-sent study,fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique.Cutting force and vibration signals were acquired to monitor tool condition during machining.A set of four tooling conditions namely healthy,worn flank,broken insert and extended tool overhang have been considered for the study.The machine learning technique was applied to both vibration and cutting force signals.Discrete wavelet features of the signals have been extracted using discrete wavelet trans formation(DWT).This transformation represents a large dataset into approximation coeffcients which contain the most useful information of the dataset.Significant features,among features extracted,were selected using J48 decision tree technique.Clas-sification of tool conditions was carried out us ing Naive Bayes algorithm.A 10 fold cross validation was incorporated to test the validity of classifier.A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.
基金supported by National Natural Science Foundation of China (Grant Nos. 11701560, 11501093, 11631003, 11690012, 71532001 and 11525101)the Fundamental Research Funds for the Central Universities+5 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. 130028613, 130028729 and 2412017FZ030)the Research Funds of Renmin University of China (Grant No. 16XNLF01)the Beijing Municipal Social Science Foundation (Grant No. 17GLC051)Fund for Building World-Class Universities (Disciplines) of Renmin University of ChinaChina’s National Key Research Special Program (Grant No. 2016YFC0207700)Center for Statistical Science at Peking University
文摘Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are becoming increasingly accessible, due to the fast development of various social network services and websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is mainly determined by their social network relationships. Then, how to extend the classical NB method to social network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the NNB method is that it takes the network relationships into consideration. The computational efficiency makes the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.A real data example is also analyzed for illustration purpose.