In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Magnetic resonance imaging is a highly sensitive approach for diagnosis of multiple sclerosis, and T2-weighted images can reveal lesions in the cerebral white matter, gray matter, and spinal cord. However, the lesions...Magnetic resonance imaging is a highly sensitive approach for diagnosis of multiple sclerosis, and T2-weighted images can reveal lesions in the cerebral white matter, gray matter, and spinal cord. However, the lesions have a poor correlation with measurable clinical disability. In this study, we performed a large-scale epidemiological survey of 238 patients with multiple sclerosis in eleven districts by network member hospitals in Shanghai, China within 1 year. The involved patients were scanned for position and size of lesions by MRI. Results showed that lesions in the cerebrum, spina cord, or supratentorial position had an impact on the activities of daily living in multiple sclerosis patients, as assessed by the Bayes network. On the other hand, brainstem lesions were very unlikely to influence the activities of daily living, and were not associated with the position of lesion, patient's gender, and patient's living place.展开更多
Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computat...Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized na¨?ve Bayes network as the classifier with the assumption that the selected features are independent to predict monoisotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to public Mo dataset demonstrates that our na¨?ve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.展开更多
Computer visualization has marvelous effects when it is applied in various fields,especially in architectural design.As an emerging force in the innovation industry,architects and design agencies have already demonstr...Computer visualization has marvelous effects when it is applied in various fields,especially in architectural design.As an emerging force in the innovation industry,architects and design agencies have already demonstrated the value of architectural visual products in actual application projects.Based on the digital image technology,virtual presentation of future scenes simulates architecture design,architectural renderings and multimedia videos.Therefore,it can help design agencies transform the theoretical design concept into a lively and realistic visual which can provide the audience with a clearer understanding of the engineering and construction projects.However,it is challenging for designers to produce satisfactory renderings due to the frequent fault data during rendering.In this paper,we use the 3Ds MAX as the operating platform and we present an algorithm based on the Bayesian network to construct a vector representation of the fault data.On this basis,a case study of 3D Max’application has also been presented.展开更多
A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-par...A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative meta-priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the classic maximum likelihood estimator.展开更多
In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this me...In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this method requires a lot of manpower and material resources,and the cost is relatively high.Therefore,research on the characteristics of rumors and automatic identification and classification of network message text is of great significance.This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts.The first is to segment the text and remove the stop words after the word segmentation is completed.Because of the data-sensitive nature of Naive Bayes,this paper performs text preprocessing on the input data.Then a naive Bayes classifier is constructed,and the Laplacian smoothing method is introduced to solve the problem of using the naive Bayes model to estimate the zero probability in rumor recognition.Finally,experiments show that the Naive Bayes algorithm combined with Laplace smoothing can effectively improve the accuracy of rumor recognition.展开更多
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti...An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.展开更多
Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate e...Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.展开更多
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金supported by the National Natural Science Foundation of China,No.30872179 and 81070958a grant from Shanghai Science and Technology Commission,No.08410702200a grant from Shanghai Key Discipline Construction,No.08GWEX0201
文摘Magnetic resonance imaging is a highly sensitive approach for diagnosis of multiple sclerosis, and T2-weighted images can reveal lesions in the cerebral white matter, gray matter, and spinal cord. However, the lesions have a poor correlation with measurable clinical disability. In this study, we performed a large-scale epidemiological survey of 238 patients with multiple sclerosis in eleven districts by network member hospitals in Shanghai, China within 1 year. The involved patients were scanned for position and size of lesions by MRI. Results showed that lesions in the cerebrum, spina cord, or supratentorial position had an impact on the activities of daily living in multiple sclerosis patients, as assessed by the Bayes network. On the other hand, brainstem lesions were very unlikely to influence the activities of daily living, and were not associated with the position of lesion, patient's gender, and patient's living place.
基金supported by an NSF Science and Technology Center, under Grant Agreement CCF0939370 and 2 G12 RR003048 from the RCMI program, Division of Research Infrastructure, National Center for Research Resources, NIH
文摘Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized na¨?ve Bayes network as the classifier with the assumption that the selected features are independent to predict monoisotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to public Mo dataset demonstrates that our na¨?ve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity.
文摘Computer visualization has marvelous effects when it is applied in various fields,especially in architectural design.As an emerging force in the innovation industry,architects and design agencies have already demonstrated the value of architectural visual products in actual application projects.Based on the digital image technology,virtual presentation of future scenes simulates architecture design,architectural renderings and multimedia videos.Therefore,it can help design agencies transform the theoretical design concept into a lively and realistic visual which can provide the audience with a clearer understanding of the engineering and construction projects.However,it is challenging for designers to produce satisfactory renderings due to the frequent fault data during rendering.In this paper,we use the 3Ds MAX as the operating platform and we present an algorithm based on the Bayesian network to construct a vector representation of the fault data.On this basis,a case study of 3D Max’application has also been presented.
文摘A Bayesian estimator with informative prior distributions (a multi-normal and an inverted gamma distribution), adequate to displacement estimation at dam displacement monitoring networks, is presented. The hyper-parameters of the prior distributions are obtained by Bayesian empirical methods with non-informative meta-priors. The performances of the Bayes estimator and the classical generalized lest squares estimator are compared using two measurements of the horizontal monitoring network of a concrete gravity dam: the Penha Garcia dam (Portugal). In order to test the robustness of the two estimators, a gross error is added to one of the measured horizontal directions: the Bayes estimator proves to be significantly more robust than the classic maximum likelihood estimator.
文摘In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this method requires a lot of manpower and material resources,and the cost is relatively high.Therefore,research on the characteristics of rumors and automatic identification and classification of network message text is of great significance.This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts.The first is to segment the text and remove the stop words after the word segmentation is completed.Because of the data-sensitive nature of Naive Bayes,this paper performs text preprocessing on the input data.Then a naive Bayes classifier is constructed,and the Laplacian smoothing method is introduced to solve the problem of using the naive Bayes model to estimate the zero probability in rumor recognition.Finally,experiments show that the Naive Bayes algorithm combined with Laplace smoothing can effectively improve the accuracy of rumor recognition.
文摘An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.
基金supported by the Natural Science Foundation of Tianjin(Grant No.16JCYBJC23000)the Open Foundation of the Key Laboratory for Ecological Environment in Coastal Areas of the State Oceanic Administration(Grant No.201604)Science and Technology Foundation for Young Scholars from Tianjin Fisheries Bureau(Grant No.J2014-05)
文摘Bayesian networks (BN) have many advantages over other methods in ecological modeling, and have become an increasingly popular modeling tool. However, BN are flawed in regard to building models based on inadequate existing knowledge. To overcome this limitation, we propose a new method that links BN with structural equation modeling (SEM). In this method, SEM is used to improve the model structure for BN. This method was used to simulate coastal phytoplankton dynamics in the Bohai Bay. We demonstrate that this hybrid approach minimizes the need for expert elicitation, generates more reasonable structures for BN models, and increases the BN model's accuracy and reliability. These results suggest that the inclusion of SEM for testing and verifying the theoretical structure during the initial construction stage improves the effectiveness of BN models, especially for complex eco-environment systems. The results also demonstrate that in the Bohai Bay, while phytoplankton biomass has the greatest influence on phytoplankton dynamics, the impact of nutrients on phytoplankton dynamics is larger than the influence of the physical environment in summer. Furthermore, although the Redfield ratio indicates that phosphorus should be the primary nutrient limiting factor, our results show that silicate plays the most important role in regulating phytoplankton dynamics in the Bohai Bay.