Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm su...Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.展开更多
Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper,...Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.展开更多
The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool cond...The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool condition for a.machining process to have superior quality and economic production.In the pre-sent study,fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique.Cutting force and vibration signals were acquired to monitor tool condition during machining.A set of four tooling conditions namely healthy,worn flank,broken insert and extended tool overhang have been considered for the study.The machine learning technique was applied to both vibration and cutting force signals.Discrete wavelet features of the signals have been extracted using discrete wavelet trans formation(DWT).This transformation represents a large dataset into approximation coeffcients which contain the most useful information of the dataset.Significant features,among features extracted,were selected using J48 decision tree technique.Clas-sification of tool conditions was carried out us ing Naive Bayes algorithm.A 10 fold cross validation was incorporated to test the validity of classifier.A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.展开更多
The widespread use of Location-Based Services (LBSs), which allows untrusted service providers to collect large quantities of information regarding users' locations, has raised serious privacy concerns. In response...The widespread use of Location-Based Services (LBSs), which allows untrusted service providers to collect large quantities of information regarding users' locations, has raised serious privacy concerns. In response to these issues, a variety of LBS Privacy Protection Mechanisms (LPPMs) have been recently proposed. However, evaluating these LPPMs remains problematic because of the absence of a generic adversarial model for most existing privacy metrics. In particular, the relationships between these metrics have not been examined in depth under a common adversarial model, leading to a possible selection of the inappropriate metric, which runs the risk of wrongly evaluating LPPMs. In this paper, we address these issues by proposing a privacy quantification model, which is based on Bayes conditional privacy, to specify a general adversarial model. This model employs a general definition of conditional privacy regarding the adversary's estimation error to compare the different LBS privacy metrics. Moreover, we present a theoretical analysis for specifying how to connect our metric with other popular LBS privacy metrics. We show that our privacy quantification model permits interpretation and comparison of various popular LBS privacy metrics under a common perspective. Our results contribute to a better understanding of how privacy properties can be measured, as well as to the better selection of the most appropriate metric for any given LBS application.展开更多
Solving complex decision problems requires the usage of information from different sources. Usually this information is uncertain and statistical or probabilistic methods are needed for its processing. However, in man...Solving complex decision problems requires the usage of information from different sources. Usually this information is uncertain and statistical or probabilistic methods are needed for its processing. However, in many cases a decision maker faces not only uncertainty of a random nature but also imprecision in the description of input data that is rather of linguistic nature. Therefore, there is a need to merge uncertainties of both types into one mathematical model. In the paper we present methodology of merging information from imprecisely reported statistical data and imprecisely formulated fuzzy prior information. Moreover, we also consider the case of imprecisely defined loss functions. The proposed methodology may be considered as the application of fuzzy statistical methods for the decision making in the systems analysis.展开更多
Sample size determination is commonly encountered in modern medical studies for two inde- pendent binomial experiments. A new approach for calculating sample size is developed by combining Bayesian and frequentist ide...Sample size determination is commonly encountered in modern medical studies for two inde- pendent binomial experiments. A new approach for calculating sample size is developed by combining Bayesian and frequentist idea when a hypothesis test between two binomial proportions is conducted. Sample size is calculated according to Bayesian posterior decision function and power of the most powerful test under 0-1 loss function. Sample sizes are investigated for two cases that two proportions are equal to some fixed value or a random value. A simulation study and a real example are used to illustrate the proposed methodologies.展开更多
基金The National Natural Science Foundation of China(No.60171006)the National Basic Research Programof China (973 Pro-gram) (No.2005CB724303).
文摘Surface electromyogram (EMG) signals were identified by fractal dimension.Two patterns of surface EMG signals were acquired from 30 healthy volunteers' right forearm flexor respectively in the process of forearm supination (FS) and forearm pronation (FP).After the raw action surface EMG (ASEMG) signal was decomposed into several sub-signals with wavelet packet transform (WPT),five fractal dimensions were respectively calculated from the raw signal and four sub-signals by the method based on fuzzy self-similarity.The results show that calculated from the sub-signal in the band 0 to 125 Hz,the fractal dimensions of FS ASEMG signals and FP ASEMG signals distributed in two different regions,and its error rate based on Bayes decision was no more than 2.26%.Therefore,the fractal dimension is an appropriate feature by which an FS ASEMG signal is distinguished from an FP ASEMG signal.
基金China 973 Project,Grant number:2005CB724303Yunnan Education Department Project,Grant number:03Y3081
文摘Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.
文摘The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool condition for a.machining process to have superior quality and economic production.In the pre-sent study,fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique.Cutting force and vibration signals were acquired to monitor tool condition during machining.A set of four tooling conditions namely healthy,worn flank,broken insert and extended tool overhang have been considered for the study.The machine learning technique was applied to both vibration and cutting force signals.Discrete wavelet features of the signals have been extracted using discrete wavelet trans formation(DWT).This transformation represents a large dataset into approximation coeffcients which contain the most useful information of the dataset.Significant features,among features extracted,were selected using J48 decision tree technique.Clas-sification of tool conditions was carried out us ing Naive Bayes algorithm.A 10 fold cross validation was incorporated to test the validity of classifier.A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.
基金supported in part by the National Science and Technology Major Project (No. 2012ZX03002001004)the National Natural Science Foundation of China (Nos. 61172090, 61163009, and 61163010)+1 种基金the PhD Programs Foundation of Ministry of Education of China (No. 20120201110013)the Scientific and Technological Project in Shaanxi Province (Nos. 2012K06-30 and 2014JQ8322)
文摘The widespread use of Location-Based Services (LBSs), which allows untrusted service providers to collect large quantities of information regarding users' locations, has raised serious privacy concerns. In response to these issues, a variety of LBS Privacy Protection Mechanisms (LPPMs) have been recently proposed. However, evaluating these LPPMs remains problematic because of the absence of a generic adversarial model for most existing privacy metrics. In particular, the relationships between these metrics have not been examined in depth under a common adversarial model, leading to a possible selection of the inappropriate metric, which runs the risk of wrongly evaluating LPPMs. In this paper, we address these issues by proposing a privacy quantification model, which is based on Bayes conditional privacy, to specify a general adversarial model. This model employs a general definition of conditional privacy regarding the adversary's estimation error to compare the different LBS privacy metrics. Moreover, we present a theoretical analysis for specifying how to connect our metric with other popular LBS privacy metrics. We show that our privacy quantification model permits interpretation and comparison of various popular LBS privacy metrics under a common perspective. Our results contribute to a better understanding of how privacy properties can be measured, as well as to the better selection of the most appropriate metric for any given LBS application.
基金The original version was presented at the congress of the IFSR2005.
文摘Solving complex decision problems requires the usage of information from different sources. Usually this information is uncertain and statistical or probabilistic methods are needed for its processing. However, in many cases a decision maker faces not only uncertainty of a random nature but also imprecision in the description of input data that is rather of linguistic nature. Therefore, there is a need to merge uncertainties of both types into one mathematical model. In the paper we present methodology of merging information from imprecisely reported statistical data and imprecisely formulated fuzzy prior information. Moreover, we also consider the case of imprecisely defined loss functions. The proposed methodology may be considered as the application of fuzzy statistical methods for the decision making in the systems analysis.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10761011, 10961026, Ph.D. Special Scientific Research Foundation of Chinese University under Grant No. 20060673002, and by program for New Century Excellent Talents in University (NCET-07-0737).
文摘Sample size determination is commonly encountered in modern medical studies for two inde- pendent binomial experiments. A new approach for calculating sample size is developed by combining Bayesian and frequentist idea when a hypothesis test between two binomial proportions is conducted. Sample size is calculated according to Bayesian posterior decision function and power of the most powerful test under 0-1 loss function. Sample sizes are investigated for two cases that two proportions are equal to some fixed value or a random value. A simulation study and a real example are used to illustrate the proposed methodologies.