期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
Application of Bayesian Compressive Sensing in IR-UWB Channel Estimation
1
作者 Song Liu Shaohua Wu Yang Li 《China Communications》 SCIE CSCD 2017年第5期30-37,共8页
Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,... Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,the IR-UWB channel has shown more features which can be taken into account in the channel estimation process,such as the clustering structures. In this paper,by taking advantage of the clustering features of the channel,a novel IR-UWB channel estimation scheme based on the Bayesian compressive sensing(BCS)framework is proposed,in which the sparse degree of the channel impulse response is not required. Extensive simulation results show that the proposed channel estimation scheme has obvious advantages over the traditional scheme,and the final demodulation performance,in terms of Bit Error Rate(BER),is therefore greatly improved. 展开更多
关键词 CLUSTER bayesian compressive sensing ultra wideband channel estimation
下载PDF
Joint 2D DOA and Doppler frequency estimation for L-shaped array using compressive sensing 被引量:5
2
作者 WANG Shixin ZHAO Yuan +3 位作者 LAILA Ibrahim XIONG Ying WANG Jun TANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期28-36,共9页
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven... A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm. 展开更多
关键词 electronic warfare L-shaped array joint parameter estimation L1-norm minimization bayesian compressive sensing(CS) pair matching
下载PDF
Cooperative Compressive Spectrum Sensing in Cognitive Underw ater Acoustic Communication Networks
3
作者 左加阔 陶文凤 +2 位作者 包永强 赵力 邹采荣 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期523-529,共7页
Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low ... Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low signal-to-noise ratios. To overcome these problems, two cooperative compressive spectrum sensing( CCSS) schemes are proposed for different scenarios( with and without channel state information). To strengthen collaboration among secondary users( SUs),cognitive central node( CCN) is provided to collect data from SUs. Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing. Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problems,and then present two CCSS algorithms based on path-wise coordinate optimization( PCO) and multi-task Bayesian compressive sensing( MT-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment. 展开更多
关键词 cognitive underwater acoustic communication(CUAC) spectrum sensing compressive sensing path-wise coordinate optimization(PCO) multi-task bayesian compressive sensing(MT-bcs)
下载PDF
BCS实现的射频层析成像链路选择方法 被引量:5
4
作者 郝晓曦 杨志勇 +1 位作者 郭雪梅 王国利 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2507-2512,共6页
针对压缩射频层析成像中随机链路选取策略无法有效避免选取冗余链路,本文提出一种利用贝叶斯压缩传感实现的射频链路选择策略.该策略首先通过定义链路冗余度和链路熵,建立表示射频链路信息量与冗余度关系的最小熵链路决策模型,其次将贝... 针对压缩射频层析成像中随机链路选取策略无法有效避免选取冗余链路,本文提出一种利用贝叶斯压缩传感实现的射频链路选择策略.该策略首先通过定义链路冗余度和链路熵,建立表示射频链路信息量与冗余度关系的最小熵链路决策模型,其次将贝叶斯压缩传感所提供的自适应投影测量框架与最小熵链路决策模型结合,最终实现链路选择和目标估计.环境目标定位实验表明,所提出的射频链路选择策略是有效的和可行的.与随机选择策略比较,其能够有效减少冗余或无关链路的选取,提高传感效率. 展开更多
关键词 压缩射频层析成像 射频链路选择 贝叶斯压缩传感 冗余链路
下载PDF
基于BCS-SPL压缩感知算法的纸病图像重构 被引量:2
5
作者 周强 胡江涛 +1 位作者 王志强 张俊涛 《中国造纸》 CAS 北大核心 2016年第12期25-30,共6页
随着造纸工业纸机速度和纸幅宽度的增长,传统的纸病检测处理方式面临着图像数据传输量剧增,纸病检测系统难以实现实时性处理的问题。压缩感知理论能够有效降低数据的采样量,但将压缩感知应用于二维纸病图像时,面临着重构纸病图像质量不... 随着造纸工业纸机速度和纸幅宽度的增长,传统的纸病检测处理方式面临着图像数据传输量剧增,纸病检测系统难以实现实时性处理的问题。压缩感知理论能够有效降低数据的采样量,但将压缩感知应用于二维纸病图像时,面临着重构纸病图像质量不高的问题。本研究采用分块压缩感知(BCS)-平滑投影Landweber(SPL)重构算法对纸病图像进行重构,并着重研究了该算法在不同采样率和不同图像分块大小下的重构效果。实验结果表明,在压缩感知框架下,通过BCS-SPL算法重构的低采样率纸病图像具有较高的图像质量,有效降低了纸病图像数据的传输量。 展开更多
关键词 压缩感知 bcs-SPL重构算法 纸病图像重构
下载PDF
基于MT-BCS的可分离DOA估计算法
6
作者 万连城 黑蕾 王迎斌 《现代电子技术》 北大核心 2019年第6期10-13,共4页
压缩感知理论的不断发展,为二维DOA估计问题提供了新的思路。然而传统的二维DOA估计方法,只是对一维估计的建模方法别无二致,这导致求解时存在计算复杂度高、分辨率低等问题。文中通过对二维DOA模型的重新建模,将多任务贝叶斯压缩感知... 压缩感知理论的不断发展,为二维DOA估计问题提供了新的思路。然而传统的二维DOA估计方法,只是对一维估计的建模方法别无二致,这导致求解时存在计算复杂度高、分辨率低等问题。文中通过对二维DOA模型的重新建模,将多任务贝叶斯压缩感知理论应用于二维DOA估计问题中,从而提出基于多任务贝叶斯压缩感知的可分离二维DOA低的优点。 展开更多
关键词 二维DOA估计 压缩感知 贝叶斯 多任务贝叶斯压缩感知 分辨率 算法复杂度
下载PDF
基于EMD和BCS的振动信号数据修复方法 被引量:13
7
作者 马云飞 贾希胜 +2 位作者 胡起伟 郭驰名 王双川 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第3期154-162,共9页
为改善振动信号修复效果,引入贝叶斯压缩感知(BCS)理论,并提出一种基于经验模态分解(EMD)的贝叶斯压缩感知修复方法,以解决连续缺失信号修复问题。针对随机缺失信号,根据压缩感知修复原理,利用贝叶斯压缩感知算法进行修复;针对连续缺失... 为改善振动信号修复效果,引入贝叶斯压缩感知(BCS)理论,并提出一种基于经验模态分解(EMD)的贝叶斯压缩感知修复方法,以解决连续缺失信号修复问题。针对随机缺失信号,根据压缩感知修复原理,利用贝叶斯压缩感知算法进行修复;针对连续缺失信号,先对其进行经验模态分解,对分解得到的所有基本模式分量利用多任务贝叶斯压缩感知算法进行修复,最终将所有修复的基本模式分量累加得到整体信号。利用西储大学公开轴承数据进行修复实验,发现所提方法在时频域指标、误差、信噪比、峰值信噪比等方面均优于正交匹配追踪和正则化正交匹配追踪算法。从修复效果角度验证,发现该方法成功还原了外圈故障信号基本模式分量中的故障特征频率,达到了修复的目的。 展开更多
关键词 振动信号 贝叶斯压缩感知 经验模态分解 数据修复 轴承
下载PDF
Robust Low-Power Algorithm for Random Sensing Matrix for Wireless ECG Systems Based on Low Sampling-Rate Approach
8
作者 Mohammadreza Balouchestani Kaamran Raahemifar Sridhar krishnan 《Journal of Signal and Information Processing》 2013年第3期125-131,共7页
The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve ex... The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix. 展开更多
关键词 sensing Matrix Power CONSUMPTION Normal and ABNORMAL ECG Signal compressed sensing Block Sparse bayesian learning
下载PDF
基于Bayesian压缩感知的融合算法 被引量:3
9
作者 周红志 冯莹莹 王戴木 《计算机应用研究》 CSCD 北大核心 2013年第2期613-615,共3页
根据压缩感知理论中的采样模式,提出了一种基于改进采样模式的压缩域图像融合算法。该算法首先通过双星型采样模式获得待融合图像的稀疏域压缩测量值,然后利用一种简单的绝对值最大融合规则直接在压缩感知域进行融合,最后通过贝叶斯的... 根据压缩感知理论中的采样模式,提出了一种基于改进采样模式的压缩域图像融合算法。该算法首先通过双星型采样模式获得待融合图像的稀疏域压缩测量值,然后利用一种简单的绝对值最大融合规则直接在压缩感知域进行融合,最后通过贝叶斯的方法重构融合图像。在图像重建的过程中采用了贝叶斯方法。由于考虑了误差以及噪声的影响,使得融合图像的质量进一步提高。仿真结果表明,该算法具有良好的融合效果。 展开更多
关键词 双星型 压缩感知 图像融合 贝叶斯
下载PDF
利用小波系数上下文建模的Bayesian压缩感知重建算法
10
作者 侯兴松 孙锦强 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第6期12-17,共6页
针对目前压缩感知图像重建算法没有充分利用图像小波系数尺度内相关性的缺点,提出一种上下文建模的Bayesian压缩感知重建(CBCS)算法。该算法假定图像的小波系数服从参数未知的spike-and-slab概率模型,先通过一种新的上下文建模方法得到... 针对目前压缩感知图像重建算法没有充分利用图像小波系数尺度内相关性的缺点,提出一种上下文建模的Bayesian压缩感知重建(CBCS)算法。该算法假定图像的小波系数服从参数未知的spike-and-slab概率模型,先通过一种新的上下文建模方法得到待估计小波系数邻域内的上下文矢量,然后根据待估计系数与上下文矢量的相关性及其父亲系数的状态,推测待估计系数为显著系数的概率,最后根据待估计系数的概率,采用马尔科夫链-蒙特卡洛采样的Bayesian推理从观测向量中恢复出图像的小波系数,进而得到重建图像。实验结果表明,CBCS算法可以自适应于图像内容的变化,与仅利用尺度间相关性的小波树结构的压缩感知重建算法相比,在0.9的采样率下,重构性能最大可提高近2dB。 展开更多
关键词 上下文建模 压缩感知 图像重建 bayesian推理
下载PDF
基于广义模式耦合稀疏Bayesian学习的1-Bit压缩感知
11
作者 司菁菁 韩亚男 +1 位作者 张磊 程银波 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2700-2707,共8页
在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提... 在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提出了一种基于广义模式耦合稀疏Bayesian学习1-Bit CS重构算法,简称为1-Bit Gr-PC-SBL算法。该算法将1-Bit CS重构问题迭代地分解成一系列标准CS重构问题,在信号稀疏模式未知的情况下,基于模式耦合稀疏Bayesian学习实现信号重构。进而,引入阈值自适应的二进制量化,设计了自适应阈值的1-Bit Gr-PC-SBL算法,进一步提升了算法的信号重构性能。 展开更多
关键词 1-Bit压缩感知 广义稀疏bayesian学习 模式耦合 自适应阈值
下载PDF
Vector Approximate Message Passing with Sparse Bayesian Learning for Gaussian Mixture Prior 被引量:2
12
作者 Chengyao Ruan Zaichen Zhang +3 位作者 Hao Jiang Jian Dang Liang Wu Hongming Zhang 《China Communications》 SCIE CSCD 2023年第5期57-69,共13页
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ... Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices. 展开更多
关键词 sparse bayesian learning approximate message passing compressed sensing expectation propagation
下载PDF
Model-guided measurement-side control for quantized block compressive sensing
13
作者 Tang Hainie Liu Hao +2 位作者 Huang Rong Deng Kailian Sun Shaoyuan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第2期82-90,共9页
To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:mea... To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:measurement subrate(S) and quantization depth(D).By learning how different parameter combinations may affect the quality-bitrate characteristics of aerial images,two parameter allocation models are derived between a bitrate budget and its appropriate parameters.Based on the corresponding allocation models,a model-guided image coding method is proposed to pre-determine the appropriate(S,D) combination for acquiring an aerial image via QBCS.The data-driven experimental results show that the proposed method can achieve near-optimal quality-bitrate performance under the QBCS framework. 展开更多
关键词 BLOCK compressive sensing (bcs) MEASUREMENT subrate quantization depth quality-bitrate AERIAL image
原文传递
Sparse Bayesian learning in ISAR tomography imaging
14
作者 苏伍各 王宏强 +2 位作者 邓彬 王瑞君 秦玉亮 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1790-1800,共11页
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a... Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms. 展开更多
关键词 inverse synthetic aperture radar (ISAR) TOMOGRAPHY computer aided tomography (CT) imaging sparse recover compress sensing (CS) sparse bayesian leaming (SBL)
下载PDF
可重构智能表面辅助通信系统时变级联信道估计 被引量:1
15
作者 邵凯 鲁奔 王光宇 《通信学报》 EI CSCD 北大核心 2024年第1期119-128,共10页
针对可重构智能表面(RIS)辅助通信系统时变级联信道的估计中需解决的级联信道稀疏表示、时变信道参数跟踪和信号重构等关键问题,提出了一种结合Khatri-Rao积的分层贝叶斯卡尔曼滤波(KR-HBKF)算法。该算法首先利用信道的稀疏特性,通过Kha... 针对可重构智能表面(RIS)辅助通信系统时变级联信道的估计中需解决的级联信道稀疏表示、时变信道参数跟踪和信号重构等关键问题,提出了一种结合Khatri-Rao积的分层贝叶斯卡尔曼滤波(KR-HBKF)算法。该算法首先利用信道的稀疏特性,通过Khatri-Rao积和克罗内克积变换得到RIS级联信道的稀疏表示,将RIS级联信道估计问题转化为低维度的稀疏信号恢复问题。然后,根据RIS级联信道的状态演化模型,在HBKF算法的预测模型中引入了时间相关性参数,应用改进的HBKF解决时变信道参数跟踪和信号重构问题,完成时变级联信道的估计。KR-HBKF算法综合利用了信道的稀疏性和时间相关性,能以较小的导频开销获得更好的估计精度。仿真结果表明,与传统压缩感知算法相比,所提算法具有约5 dB的估计性能提升,且在不同的时变信道条件下具有更好的鲁棒性。 展开更多
关键词 可重构智能表面 信道估计 贝叶斯压缩感知 卡尔曼滤波
下载PDF
OTFS系统SBL-Turbo压缩感知信道估计算法
16
作者 张华卫 刘佳 +2 位作者 蒋占军 李翠然 唐喜娟 《信号处理》 CSCD 北大核心 2024年第6期1074-1081,共8页
针对正交时频空调制(OTFS)系统由多普勒频移引起的信道估计准确度下降的问题,本文提出了一种联合无线信道在时延-多普勒域稀疏特性的SBL-Turbo压缩感知信道估计算法。首先,对时延-多普勒域稀疏信道建模,使其服从以噪声功率为条件的高斯... 针对正交时频空调制(OTFS)系统由多普勒频移引起的信道估计准确度下降的问题,本文提出了一种联合无线信道在时延-多普勒域稀疏特性的SBL-Turbo压缩感知信道估计算法。首先,对时延-多普勒域稀疏信道建模,使其服从以噪声功率为条件的高斯先验分布,利用稀疏贝叶斯学习模块估计得到稀疏信道的均值与方差,并结合期望最大化算法更新高斯先验模型中的参数。其次,引入了LMMSE(线性最小均方误差)估计器模块,该模块对稀疏信道的后验分布进行再估计,提高估计的准确度。通过对每个模块估计得到的信道后验分布进行数据处理,使得模块的输入值与输出值解耦,进而减少模块间的错误传播。最后,两个模块采用Turbo结构迭代估计信道的后验分布,得到信道状态信息。实验结果表明,相较于其他估计方法,该算法能够显著提高信道估计的精度,并且改善系统的误码率性能,能够有效地解决OTFS系统中由多普勒频移引起的信道估计问题。 展开更多
关键词 正交时频空调制 信道估计 压缩感知 稀疏贝叶斯学习
下载PDF
基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知 被引量:1
17
作者 李俊辉 侯兴松 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期472-480,共9页
基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(M... 基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(MSD-Net)的图像BCS迭代方法(PSASM-MD)。首先,在每步迭代中,利用残差网络并行地对每个图像子块单独去噪后再拼接。然后,对拼接后的图像采用含有伪监督注意力模块(PSAM)的MSD-Net进行特征提取,以更好地去除块伪影以提高重建性能。其中,PSAM被用于从含有块伪影的残差中抽取部分有用信号,并传递到下一步迭代实现短期记忆,以尽量避免去除有用信号。实验结果表明,该文方法相比现有先进的同类BCS方法在主观视觉感知和客观评价指标上均取得了更优的结果。 展开更多
关键词 分块压缩感知 短期记忆 图像去伪影 深度展开网络
下载PDF
基于相位偏移的压缩感知无源多目标定位方法 被引量:1
18
作者 盛金锋 李宁 +2 位作者 郭艳 陈承 李华静 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第2期241-248,共8页
无源定位作为一种新兴的定位技术,是安防监控、入侵检测和接触跟踪等被动传感领域的研究热点。其通过分析无源目标对无线链路的阴影效应来定位目标。相位是无线信号的一个重要特性,比信号强度更具细粒度。为提升定位性能,利用无线链路... 无源定位作为一种新兴的定位技术,是安防监控、入侵检测和接触跟踪等被动传感领域的研究热点。其通过分析无源目标对无线链路的阴影效应来定位目标。相位是无线信号的一个重要特性,比信号强度更具细粒度。为提升定位性能,利用无线链路相位信息,提出基于相位偏移的压缩感知无源多目标定位方法。该方法将接收信号相位偏移值作为观测数据,结合变分贝叶斯推理,恢复目标位置稀疏向量。仿真实验结果表明,在6.5 m×6.5 m的监测区域中,基于接收信号强度的定位方法平均定位误差为0.579 0 m,而该方法的平均定位误差为0.254 7 m,定位精度提升超过1倍,且该方法具有较强的鲁棒性。 展开更多
关键词 无源定位 压缩感知 相位偏移 变分贝叶斯推理
下载PDF
Bayesian compressive principal component analysis
19
作者 Di MA Songcan CHEN 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第4期29-38,共10页
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we wou... Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we would be more likely to obtain a few compressed sensing(CS)measurements than the complete high-dimensional data due to the high cost of data acquisition and storage.In this paper,we propose a novel Bayesian algorithm for learning the solutions of PCA for the original data just from these CS measurements.To this end,we utilize a generative latent variable model incorporated with a structure prior to model both sparsity of the original data and effective dimensionality of the latent space.The proposed algorithm enjoys two important advantages:1)The effective dimensionality of the latent space can be determined automatically with no need to be pre-specified;2)The sparsity modeling makes us unnecessary to employ multiple measurement matrices to maintain the original data space but a single one,thus being storage efficient.Experimental results on synthetic and real-world datasets show that the proposed algorithm can accurately learn the solutions of PCA for the original data,which can in turn be applied in reconstruction task with favorable results. 展开更多
关键词 compressed sensing principal component analysis bayesian learning sparsity modeling
原文传递
基于贝叶斯分层模型的低复杂度无线传感器网络定位算法
20
作者 翟永祺 《现代信息科技》 2024年第8期106-110,共5页
文章对基于压缩感知的无线传感器网络定位算法进行了研究,存在重构算法计算量大、定位误差较大等问题,为降低计算复杂度和定位误差,文章提出基于贝叶斯分层模型的低复杂度无线传感器网络定位算法。首先,将稀疏贝叶斯分层先验模型引入到... 文章对基于压缩感知的无线传感器网络定位算法进行了研究,存在重构算法计算量大、定位误差较大等问题,为降低计算复杂度和定位误差,文章提出基于贝叶斯分层模型的低复杂度无线传感器网络定位算法。首先,将稀疏贝叶斯分层先验模型引入到无线传感器网络的定位中;其次,通过运用稀疏贝叶斯理论推理出估计目标的后验概率分布;最后,结合变分消息传递(VMP)算法,使用辅助函数对未知变量的联合后验概率密度函数进行等效,得到目标位置向量的估计结果。仿真结果表明,相较于传统的重构算法,文章提出的方法具有更好的恢复效果,计算复杂度更低。 展开更多
关键词 压缩感知 贝叶斯分层模型 低复杂度 重构算法
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部