Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,...Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,the IR-UWB channel has shown more features which can be taken into account in the channel estimation process,such as the clustering structures. In this paper,by taking advantage of the clustering features of the channel,a novel IR-UWB channel estimation scheme based on the Bayesian compressive sensing(BCS)framework is proposed,in which the sparse degree of the channel impulse response is not required. Extensive simulation results show that the proposed channel estimation scheme has obvious advantages over the traditional scheme,and the final demodulation performance,in terms of Bit Error Rate(BER),is therefore greatly improved.展开更多
A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conven...A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.展开更多
Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low ...Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low signal-to-noise ratios. To overcome these problems, two cooperative compressive spectrum sensing( CCSS) schemes are proposed for different scenarios( with and without channel state information). To strengthen collaboration among secondary users( SUs),cognitive central node( CCN) is provided to collect data from SUs. Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing. Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problems,and then present two CCSS algorithms based on path-wise coordinate optimization( PCO) and multi-task Bayesian compressive sensing( MT-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment.展开更多
The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve ex...The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix.展开更多
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ...Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.展开更多
To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:mea...To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:measurement subrate(S) and quantization depth(D).By learning how different parameter combinations may affect the quality-bitrate characteristics of aerial images,two parameter allocation models are derived between a bitrate budget and its appropriate parameters.Based on the corresponding allocation models,a model-guided image coding method is proposed to pre-determine the appropriate(S,D) combination for acquiring an aerial image via QBCS.The data-driven experimental results show that the proposed method can achieve near-optimal quality-bitrate performance under the QBCS framework.展开更多
Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) a...Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.展开更多
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we wou...Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we would be more likely to obtain a few compressed sensing(CS)measurements than the complete high-dimensional data due to the high cost of data acquisition and storage.In this paper,we propose a novel Bayesian algorithm for learning the solutions of PCA for the original data just from these CS measurements.To this end,we utilize a generative latent variable model incorporated with a structure prior to model both sparsity of the original data and effective dimensionality of the latent space.The proposed algorithm enjoys two important advantages:1)The effective dimensionality of the latent space can be determined automatically with no need to be pre-specified;2)The sparsity modeling makes us unnecessary to employ multiple measurement matrices to maintain the original data space but a single one,thus being storage efficient.Experimental results on synthetic and real-world datasets show that the proposed algorithm can accurately learn the solutions of PCA for the original data,which can in turn be applied in reconstruction task with favorable results.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.61001092,61371102)
文摘Due to the sparse nature of the impulse radio ultra-wideband(IR-UWB)communication channel in the time domain,compressive sensing(CS)theory is very suitable for the sparse channel estimation. Besides the sparse nature,the IR-UWB channel has shown more features which can be taken into account in the channel estimation process,such as the clustering structures. In this paper,by taking advantage of the clustering features of the channel,a novel IR-UWB channel estimation scheme based on the Bayesian compressive sensing(BCS)framework is proposed,in which the sparse degree of the channel impulse response is not required. Extensive simulation results show that the proposed channel estimation scheme has obvious advantages over the traditional scheme,and the final demodulation performance,in terms of Bit Error Rate(BER),is therefore greatly improved.
文摘A joint two-dimensional(2D)direction-of-arrival(DOA)and radial Doppler frequency estimation method for the L-shaped array is proposed in this paper based on the compressive sensing(CS)framework.Revised from the conventional CS-based methods where the joint spatial-temporal parameters are characterized in one large scale matrix,three smaller scale matrices with independent azimuth,elevation and Doppler frequency are introduced adopting a separable observation model.Afterwards,the estimation is achieved by L1-norm minimization and the Bayesian CS algorithm.In addition,under the L-shaped array topology,the azimuth and elevation are separated yet coupled to the same radial Doppler frequency.Hence,the pair matching problem is solved with the aid of the radial Doppler frequency.Finally,numerical simulations corroborate the feasibility and validity of the proposed algorithm.
基金National Natural Science Foundations of China(Nos.60872073,51075068,60975017,61301219)Doctoral Fund of Ministry of Education,China(No.20110092130004)
文摘Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low signal-to-noise ratios. To overcome these problems, two cooperative compressive spectrum sensing( CCSS) schemes are proposed for different scenarios( with and without channel state information). To strengthen collaboration among secondary users( SUs),cognitive central node( CCN) is provided to collect data from SUs. Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing. Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problems,and then present two CCSS algorithms based on path-wise coordinate optimization( PCO) and multi-task Bayesian compressive sensing( MT-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment.
文摘The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix.
基金supported by NSFC projects(61960206005,61803211,61871111,62101275,62171127,61971136,and 62001056)Jiangsu NSF project(BK20200820)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX210106)Research Fund of National Mobile Communications Research Laboratory.
文摘Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.
基金supported by the Natural Science Foundation of Shanghai(18ZR1400300)
文摘To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:measurement subrate(S) and quantization depth(D).By learning how different parameter combinations may affect the quality-bitrate characteristics of aerial images,two parameter allocation models are derived between a bitrate budget and its appropriate parameters.Based on the corresponding allocation models,a model-guided image coding method is proposed to pre-determine the appropriate(S,D) combination for acquiring an aerial image via QBCS.The data-driven experimental results show that the proposed method can achieve near-optimal quality-bitrate performance under the QBCS framework.
基金Project(61171133)supported by the National Natural Science Foundation of ChinaProject(11JJ1010)supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProject(61101182)supported by the National Natural Science Foundation for Young Scientists of China
文摘Inverse synthetic aperture radar(ISAR) imaging can be regarded as a narrow-band version of the computer aided tomography(CT). The traditional CT imaging algorithms for ISAR, including the polar format algorithm(PFA) and the convolution back projection algorithm(CBP), usually suffer from the problem of the high sidelobe and the low resolution. The ISAR tomography image reconstruction within a sparse Bayesian framework is concerned. Firstly, the sparse ISAR tomography imaging model is established in light of the CT imaging theory. Then, by using the compressed sensing(CS) principle, a high resolution ISAR image can be achieved with limited number of pulses. Since the performance of existing CS-based ISAR imaging algorithms is sensitive to the user parameter, this makes the existing algorithms inconvenient to be used in practice. It is well known that the Bayesian formalism of recover algorithm named sparse Bayesian learning(SBL) acts as an effective tool in regression and classification,which uses an efficient expectation maximization procedure to estimate the necessary parameters, and retains a preferable property of the l0-norm diversity measure. Motivated by that, a fully automated ISAR tomography imaging algorithm based on SBL is proposed.Experimental results based on simulated and electromagnetic(EM) data illustrate the effectiveness and the superiority of the proposed algorithm over the existing algorithms.
基金This work was supported by the Key Program of the National Natural Science Foundation of China(NSFC)(Grant No.61732006).
文摘Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we would be more likely to obtain a few compressed sensing(CS)measurements than the complete high-dimensional data due to the high cost of data acquisition and storage.In this paper,we propose a novel Bayesian algorithm for learning the solutions of PCA for the original data just from these CS measurements.To this end,we utilize a generative latent variable model incorporated with a structure prior to model both sparsity of the original data and effective dimensionality of the latent space.The proposed algorithm enjoys two important advantages:1)The effective dimensionality of the latent space can be determined automatically with no need to be pre-specified;2)The sparsity modeling makes us unnecessary to employ multiple measurement matrices to maintain the original data space but a single one,thus being storage efficient.Experimental results on synthetic and real-world datasets show that the proposed algorithm can accurately learn the solutions of PCA for the original data,which can in turn be applied in reconstruction task with favorable results.