期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Logistic函数的贝叶斯概率矩阵分解算法 被引量:9
1
作者 方耀宁 郭云飞 兰巨龙 《电子与信息学报》 EI CSCD 北大核心 2014年第3期715-720,共6页
在协同过滤推荐系统中,矩阵分解是一种非常有效的工具。贝叶斯概率矩阵分解模型具有预测精度高的优点,但不能表示潜在因子之间的非线性关系。针对该问题,该文提出一种基于Logistic函数的改进贝叶斯概率矩阵分解模型,并使用马尔科夫链蒙... 在协同过滤推荐系统中,矩阵分解是一种非常有效的工具。贝叶斯概率矩阵分解模型具有预测精度高的优点,但不能表示潜在因子之间的非线性关系。针对该问题,该文提出一种基于Logistic函数的改进贝叶斯概率矩阵分解模型,并使用马尔科夫链蒙特卡罗方法进行训练。在两组真实数据集合上的实验表明,基于Logistic函数的贝叶斯概率矩阵分解算法能够明显提高预测准确性,有效缓解数据稀疏性问题。 展开更多
关键词 推荐系统 信息处理 协同过滤 贝叶斯概率矩阵分解 Logistic函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部