Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du...Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.展开更多
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit...This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science.展开更多
This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation ...This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models.展开更多
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air...To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackl...In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.展开更多
The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding ...The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.展开更多
To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and intern...To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.展开更多
One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insu...One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength.展开更多
Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., in...Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., initial speed of methane diffusion, a consistent coal coefficient, gas pressure, destructive style of coal and mining depth, as discriminating factors of the model. In our model, we divided the type of coal and gas outbursts into four grades regarded as four normal populations. We then obtained the corresponding discriminant functions through training a set of data from engineering examples as learning samples and evaluated their criteria by a back substitution method to verify the optimal properties of the model. Finally, we applied the model to the prediction of coal and gas outbursts in the Yunnan Enhong Mine. Our results coincided completely with the actual situation. These results show that a model of Bayesian discriminant analysis has excellent recognition performance, high prediction accuracy and a low error rate and is an effective method to predict coal and gas outbursts.展开更多
A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on ...A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on the parameter values with typical data from laboratory tests and site investigations used in design.The posterior distributions are often complex,multidimensional functions whose analysis requires the use of Markov chain Monte Carlo(MCMC)methods.These procedures are used to draw representative samples of the parameters investigated,providing information on their best estimate values,variability and correlations.The paper describes the methodology to define the posterior distributions of the input parameters for slope design and the use of these results for evaluation of the reliability of a slope with the first order reliability method(FORM).The reliability analysis corresponds to a forward stability analysis of the slope where the factor of safety(FS)is calculated with a surrogate model from the more likely values of the input parameters.The Bayesian model is also used to update the estimation of the input parameters based on the back analysis of slope failure.In this case,the condition FS?1 is treated as a data point that is compared with the model prediction of FS.The analysis requires a sufficient number of observations of failure to outbalance the effect of the initial input parameters.The parameters are updated according to their uncertainty,which is determined by the amount of data supporting them.The methodology is illustrated with an example of a rock slope characterised with a Hoek-Brown rock mass strength.The example is used to highlight the advantages of using Bayesian methods for the slope reliability analysis and to show the effects of data support on the results of the updating process from back analysis of failure.展开更多
How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form cou...How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.展开更多
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurr...This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.展开更多
The bearings of a certain type have their lives following a Weibull distribution. In a life test with 20 sets of bearings, only one set failed within the specified time, and none of the remainder failed even after th...The bearings of a certain type have their lives following a Weibull distribution. In a life test with 20 sets of bearings, only one set failed within the specified time, and none of the remainder failed even after the time of test has been extended. With a set of testing data like that in Table 1, it is required to estimate the reliability at the mission time. In this paper, we first use hierarchical Bayesian method to determine the prior distribution and the Bayesian estimates of various probabilities of failures, p i 's, then use the method of least squares to estimate the parameters of the Weibull distribution and the reliability. Actual computation shows that the estimates so obtained are rather robust. And the results have been adopted for practical use.展开更多
Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascul...Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascular cognitive impairment.Data sources: The initial literature search was performed with PubMed, EMBASE, the Cochrane Methodology Register, the Cochrane Central Register of Controlled Trials, and Cumulative Index to Nursing & Allied Health(CINAHL) from inception to January 2018 for studies regarding donepezil, galantamine, rivastigmine, and memantine for treatment of vascular cognitive impairment.Data selection: Randomized controlled trials on donepezil, galantamine, rivastigmine, and memantine as monotherapy in the treatment of vascular cognitive impairment were included. A Bayesian network meta-analysis was conducted. Outcome measures: Efficacy was assessed by changes in scores of the Alzheimer's Disease Assessment Scale, cognitive subscale, Mini-Mental State Examination, Neuropsychiatric Inventory scores and Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input, Activities of Daily Living, the Clinical Dementia Rating scale. Safety was evaluated by mortality, total adverse events(TAEs), serious adverse events(SAEs), nausea, vomiting. diarrhea, or cerebrovascular accidents(CVAs). Results: After screening 1717 citations, 12 randomized controlled trials were included. Donepezil and rivastigmine(mean difference(e) = –0.77, 95% confidence interval(CI): 0.25–1.32; MD = 1.05, 95% CI: 0.18–1.79) were significantly more effective than placebo in reducing Mini-Mental State Examination scores. Donepezil, galantamine, and memantine(MD = –1.30, 95% CI: –2.27 to –0.42; MD = –1.67, 95% CI: –3.36 to –0.06; MD = –2.27, 95% CI: –3.91 to –0.53) showed superior benefits on the Alzheimer's Disease Assessment Scale–cognitive scores compared with placebo. Memantine(MD = 2.71, 95% CI: 1.05–7.29) improved global status(Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input) more than the placebo. Safety results revealed that donepezil 10 mg(odds ratio(OR) = 3.04, 95% CI: 1.86–5.41) contributed to higer risk of adverse events than placebo. Galantamine(OR = 5.64, 95% CI: 1.31–26.71) increased the risk of nausea. Rivastigmine(OR = 16.80, 95% CI: 1.78–319.26) increased the risk of vomiting. No agents displayed a significant risk of serious adverse events, mortality, cerebrovascular accidents, or diarrhea.Conclusion: We found significant efficacy of donepezil, galantamine, and memantine on cognition. Memantine can provide significant efficacy in global status. They are all safe and well tolerated.展开更多
Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support v...Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects.展开更多
Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. Thi...Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. This paper proposes the FuzzySVM(support vector machine) geotechnical engineering risk analysis method based on the Bayesian network. The proposed method utilizes the fuzzy set theory to build a Bayesian network to reflect prior knowledge, and utilizes the SVM to build a Bayesian network to reflect historical samples. Then a Bayesian network for evaluation is built in Bayesian estimation method by combining prior knowledge with historical samples. Taking seismic damage evaluation of slopes as an example, the steps of the method are stated in detail. The proposed method is used to evaluate the seismic damage of 96 slopes along roads in the area affected by the Wenchuan earthquake. The evaluation results show that the method can solve the overfitting problem, which often occurs if the machine learning methods are used to evaluate risk of geotechnical engineering, and the performance of the method is much better than that of the previous machine learning methods. Moreover,the proposed method can also effectively evaluate various geotechnical engineering risks in the absence of some influencing factors.展开更多
The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomogr...The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization.展开更多
文摘Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully.
文摘This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science.
基金This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RG23142).
文摘This article introduces a novel variant of the generalized linear exponential(GLE)distribution,known as the sine generalized linear exponential(SGLE)distribution.The SGLE distribution utilizes the sine transformation to enhance its capabilities.The updated distribution is very adaptable and may be efficiently used in the modeling of survival data and dependability issues.The suggested model incorporates a hazard rate function(HRF)that may display a rising,J-shaped,or bathtub form,depending on its unique characteristics.This model includes many well-known lifespan distributions as separate sub-models.The suggested model is accompanied with a range of statistical features.The model parameters are examined using the techniques of maximum likelihood and Bayesian estimation using progressively censored data.In order to evaluate the effectiveness of these techniques,we provide a set of simulated data for testing purposes.The relevance of the newly presented model is shown via two real-world dataset applications,highlighting its superiority over other respected similar models.
文摘To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.SBK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.
基金The National Natural Science Foundation of China(No.11171065,81130068)the Natural Science Foundation of Jiangsu Province(No.BK2011058)the Fundamental Research Funds for the Central Universities(No.JKPZ2013015)
文摘The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.
文摘To improve the accuracy and speed in cycle-accurate power estimation, this paper uses multiple dimensional coefficients to build a Bayesian inference dynamic power model. By analyzing the power distribution and internal node state, we find the deficiency of only using port information. Then, we define the gate level number computing method and the concept of slice, and propose using slice analysis to distill switching density as coefficients in a special circuit stage and participate in Bayesian inference with port information. Experiments show that this method can reduce the power-per-cycle estimation error by 21.9% and the root mean square error by 25.0% compared with the original model, and maintain a 700 + speedup compared with the existing gate-level power analysis technique.
基金supported by the Large Open PitⅡProject through contract No.019799 with the Geotechnical Research Centre of The University of Queensland and by SRK Consulting South Africa
文摘One of the main difficulties in the geotechnical design process lies in dealing with uncertainty. Uncertainty is associated with natural variation of properties, and the imprecision and unpredictability caused by insufficient information on parameters or models. Probabilistic methods are normally used to quantify uncertainty. However, the frequentist approach commonly used for this purpose has some drawbacks.First, it lacks a formal framework for incorporating knowledge not represented by data. Second, it has limitations in providing a proper measure of the confidence of parameters inferred from data. The Bayesian approach offers a better framework for treating uncertainty in geotechnical design. The advantages of the Bayesian approach for uncertainty quantification are highlighted in this paper with the Bayesian regression analysis of laboratory test data to infer the intact rock strength parameters σand mused in the Hoek-Brown strength criterion. Two case examples are used to illustrate different aspects of the Bayesian methodology and to contrast the approach with a frequentist approach represented by the nonlinear least squares(NLLS) method. The paper discusses the use of a Student’s t-distribution versus a normal distribution to handle outliers, the consideration of absolute versus relative residuals, and the comparison of quality of fitting results based on standard errors and Bayes factors. Uncertainty quantification with confidence and prediction intervals of the frequentist approach is compared with that based on scatter plots and bands of fitted envelopes of the Bayesian approach. Finally, the Bayesian method is extended to consider two improvements of the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated as a variable to improve the fitting in the triaxial region. The second is the incorporation of the uncertainty in the estimation of the direct tensile strength from Brazilian test results within the overall evaluation of the intact rock strength.
基金supported by the National Hi-tech Research and Development Program of China (No.2006BAK03B02-04) the New Century Excellent Talent Support Plan of Ministry of Education of China (No.NCET-06-0477)
文摘Based on the principle of Bayesian discriminant analysis, we established a model of Bayesian discriminant analysis for predicting coal and gas outbursts. We selected five major indices which affect outbursts, i.e., initial speed of methane diffusion, a consistent coal coefficient, gas pressure, destructive style of coal and mining depth, as discriminating factors of the model. In our model, we divided the type of coal and gas outbursts into four grades regarded as four normal populations. We then obtained the corresponding discriminant functions through training a set of data from engineering examples as learning samples and evaluated their criteria by a back substitution method to verify the optimal properties of the model. Finally, we applied the model to the prediction of coal and gas outbursts in the Yunnan Enhong Mine. Our results coincided completely with the actual situation. These results show that a model of Bayesian discriminant analysis has excellent recognition performance, high prediction accuracy and a low error rate and is an effective method to predict coal and gas outbursts.
基金supported by the Large Open Pit Ⅱ project through contract No.019799 with the Geotechnical Research Centre of The University of Queensland,Australia and by SRK Consulting South Africa
文摘A Bayesian approach is proposed for the inference of the geotechnical parameters used in slope design.The methodology involves the construction of posterior probability distributions that combine prior information on the parameter values with typical data from laboratory tests and site investigations used in design.The posterior distributions are often complex,multidimensional functions whose analysis requires the use of Markov chain Monte Carlo(MCMC)methods.These procedures are used to draw representative samples of the parameters investigated,providing information on their best estimate values,variability and correlations.The paper describes the methodology to define the posterior distributions of the input parameters for slope design and the use of these results for evaluation of the reliability of a slope with the first order reliability method(FORM).The reliability analysis corresponds to a forward stability analysis of the slope where the factor of safety(FS)is calculated with a surrogate model from the more likely values of the input parameters.The Bayesian model is also used to update the estimation of the input parameters based on the back analysis of slope failure.In this case,the condition FS?1 is treated as a data point that is compared with the model prediction of FS.The analysis requires a sufficient number of observations of failure to outbalance the effect of the initial input parameters.The parameters are updated according to their uncertainty,which is determined by the amount of data supporting them.The methodology is illustrated with an example of a rock slope characterised with a Hoek-Brown rock mass strength.The example is used to highlight the advantages of using Bayesian methods for the slope reliability analysis and to show the effects of data support on the results of the updating process from back analysis of failure.
文摘How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective.
基金This project is funded bythe UK Engineering and Physical Sciences Research Council (EPSRC) under Grant Refer-ences:GR/S85504 and GR/S85498
文摘This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.
文摘The bearings of a certain type have their lives following a Weibull distribution. In a life test with 20 sets of bearings, only one set failed within the specified time, and none of the remainder failed even after the time of test has been extended. With a set of testing data like that in Table 1, it is required to estimate the reliability at the mission time. In this paper, we first use hierarchical Bayesian method to determine the prior distribution and the Bayesian estimates of various probabilities of failures, p i 's, then use the method of least squares to estimate the parameters of the Weibull distribution and the reliability. Actual computation shows that the estimates so obtained are rather robust. And the results have been adopted for practical use.
基金supported by the Natural Science Foundation of Liaoning Province of China,No.20170541036(to HYL)
文摘Objective: To assess and compare the clinical efficacy and safety of cognitive enhancers(donepezil, galantamine, rivastigmine, and memantine) on cognition, behavior, function, and global status in patients with vascular cognitive impairment.Data sources: The initial literature search was performed with PubMed, EMBASE, the Cochrane Methodology Register, the Cochrane Central Register of Controlled Trials, and Cumulative Index to Nursing & Allied Health(CINAHL) from inception to January 2018 for studies regarding donepezil, galantamine, rivastigmine, and memantine for treatment of vascular cognitive impairment.Data selection: Randomized controlled trials on donepezil, galantamine, rivastigmine, and memantine as monotherapy in the treatment of vascular cognitive impairment were included. A Bayesian network meta-analysis was conducted. Outcome measures: Efficacy was assessed by changes in scores of the Alzheimer's Disease Assessment Scale, cognitive subscale, Mini-Mental State Examination, Neuropsychiatric Inventory scores and Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input, Activities of Daily Living, the Clinical Dementia Rating scale. Safety was evaluated by mortality, total adverse events(TAEs), serious adverse events(SAEs), nausea, vomiting. diarrhea, or cerebrovascular accidents(CVAs). Results: After screening 1717 citations, 12 randomized controlled trials were included. Donepezil and rivastigmine(mean difference(e) = –0.77, 95% confidence interval(CI): 0.25–1.32; MD = 1.05, 95% CI: 0.18–1.79) were significantly more effective than placebo in reducing Mini-Mental State Examination scores. Donepezil, galantamine, and memantine(MD = –1.30, 95% CI: –2.27 to –0.42; MD = –1.67, 95% CI: –3.36 to –0.06; MD = –2.27, 95% CI: –3.91 to –0.53) showed superior benefits on the Alzheimer's Disease Assessment Scale–cognitive scores compared with placebo. Memantine(MD = 2.71, 95% CI: 1.05–7.29) improved global status(Clinician's Interview-Based Impression of Change Scale Plus Caregiver's Input) more than the placebo. Safety results revealed that donepezil 10 mg(odds ratio(OR) = 3.04, 95% CI: 1.86–5.41) contributed to higer risk of adverse events than placebo. Galantamine(OR = 5.64, 95% CI: 1.31–26.71) increased the risk of nausea. Rivastigmine(OR = 16.80, 95% CI: 1.78–319.26) increased the risk of vomiting. No agents displayed a significant risk of serious adverse events, mortality, cerebrovascular accidents, or diarrhea.Conclusion: We found significant efficacy of donepezil, galantamine, and memantine on cognition. Memantine can provide significant efficacy in global status. They are all safe and well tolerated.
基金Projects(2013BAB02B01,2013BAB02B03)supported by the National Key Technologies R&D Program of ChinaProjects(41072224,41272347)supported by the National Natural Science Foundation of China
文摘Geomechanical parameters are complex and uncertain.In order to take this complexity and uncertainty into account,a probabilistic back-analysis method combining the Bayesian probability with the least squares support vector machine(LS-SVM) technique was proposed.The Bayesian probability was used to deal with the uncertainties in the geomechanical parameters,and an LS-SVM was utilized to establish the relationship between the displacement and the geomechanical parameters.The proposed approach was applied to the geomechanical parameter identification in a slope stability case study which was related to the permanent ship lock within the Three Gorges project in China.The results indicate that the proposed method presents the uncertainties in the geomechanical parameters reasonably well,and also improves the understanding that the monitored information is important in real projects.
基金supported by the National Key Research and Development Program (Grant No. 2017YFC0504901)Sichuan Traffic Construction Science and Technology Project(Grant No. 2016B2–2)Doctoral Innovation Fund Program of Southwest Jiaotong University(Grant No. D-CX201804)
文摘Machine learning method has been widely used in various geotechnical engineering risk analysis in recent years. However, the overfitting problem often occurs due to the small number of samples obtained in history. This paper proposes the FuzzySVM(support vector machine) geotechnical engineering risk analysis method based on the Bayesian network. The proposed method utilizes the fuzzy set theory to build a Bayesian network to reflect prior knowledge, and utilizes the SVM to build a Bayesian network to reflect historical samples. Then a Bayesian network for evaluation is built in Bayesian estimation method by combining prior knowledge with historical samples. Taking seismic damage evaluation of slopes as an example, the steps of the method are stated in detail. The proposed method is used to evaluate the seismic damage of 96 slopes along roads in the area affected by the Wenchuan earthquake. The evaluation results show that the method can solve the overfitting problem, which often occurs if the machine learning methods are used to evaluate risk of geotechnical engineering, and the performance of the method is much better than that of the previous machine learning methods. Moreover,the proposed method can also effectively evaluate various geotechnical engineering risks in the absence of some influencing factors.
文摘The aim of this study was to prospectively assess the accuracy gain of Bayesian analysis-based computeraided diagnosis(CAD) vs human judgment alone in characterizing solitary pulmonary nodules(SPNs) at computed tomography(CT). The study included 100 randomly selected SPNs with a definitive diagnosis. Nodule features at first and follow-up CT scans as well as clinical data were evaluated individually on a 1 to 5 points risk chart by 7 radiologists, firstly blinded then aware of Bayesian Inference Malignancy Calculator(BIMC) model predictions. Raters' predictions were evaluated by means of receiver operating characteristic(ROC) curve analysis and decision analysis. Overall ROC area under the curve was 0.758 before and 0.803 after the disclosure of CAD predictions(P = 0.003). A net gain in diagnostic accuracy was found in 6 out of 7 readers. Mean risk class of benign nodules dropped from 2.48 to 2.29, while mean risk class of malignancies rose from 3.66 to 3.92. Awareness of CAD predictions also determined a significant drop on mean indeterminate SPNs(15 vs 23.86 SPNs) and raised the mean number of correct and confident diagnoses(mean 39.57 vs 25.71 SPNs). This study provides evidence supporting the integration of the Bayesian analysis-based BIMC model in SPN characterization.