期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ensemble Bayesian method for parameter distribution inference:application to reactor physics 被引量:1
1
作者 Jia‑Qin Zeng Hai‑Xiang Zhang +1 位作者 He‑Lin Gong Ying‑Ting Luo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期216-228,共13页
The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model ... The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering. 展开更多
关键词 Model parameters bayesian inference Frequency distribution ensemble bayesian method KL divergence
下载PDF
Climate change in the Tianshan and northern Kunlun Mountains based on GCM simulation ensemble with Bayesian model averaging 被引量:3
2
作者 YANG Jing FANG Gonghuan +1 位作者 CHEN Yaning Philippe DE-MAEYER 《Journal of Arid Land》 SCIE CSCD 2017年第4期622-634,共13页
Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan ... Climate change in mountainous regions has significant impacts on hydrological and ecological systems. This research studied the future temperature, precipitation and snowfall in the 21^(st) century for the Tianshan and northern Kunlun Mountains(TKM) based on the general circulation model(GCM) simulation ensemble from the coupled model intercomparison project phase 5(CMIP5) under the representative concentration pathway(RCP) lower emission scenario RCP4.5 and higher emission scenario RCP8.5 using the Bayesian model averaging(BMA) technique. Results show that(1) BMA significantly outperformed the simple ensemble analysis and BMA mean matches all the three observed climate variables;(2) at the end of the 21^(st) century(2070–2099) under RCP8.5, compared to the control period(1976–2005), annual mean temperature and mean annual precipitation will rise considerably by 4.8°C and 5.2%, respectively, while mean annual snowfall will dramatically decrease by 26.5%;(3) precipitation will increase in the northern Tianshan region while decrease in the Amu Darya Basin. Snowfall will significantly decrease in the western TKM. Mean annual snowfall fraction will also decrease from 0.56 of 1976–2005 to 0.42 of 2070–2099 under RCP8.5; and(4) snowfall shows a high sensitivity to temperature in autumn and spring while a low sensitivity in winter, with the highest sensitivity values occurring at the edge areas of TKM. The projections mean that flood risk will increase and solid water storage will decrease. 展开更多
关键词 climate change GCM ensemble bayesian model averaging Tianshan and northern Kunlun Mountains
下载PDF
Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework 被引量:3
3
作者 SHEN Zheqi ZHANG Xiangming TANG Youmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期69-78,共10页
Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustme... Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustment Kalman filter(EAKF) and sequential importance resampling particle filter(SIR-PF), using a well-known nonlinear and non-Gaussian model(Lorenz '63 model). The EAKF, which is a deterministic scheme of the ensemble Kalman filter(En KF), performs better than the classical(stochastic) En KF in a general framework. Comparison between the SIR-PF and the EAKF reveals that the former outperforms the latter if ensemble size is so large that can avoid the filter degeneracy, and vice versa. The impact of the probability density functions and effective ensemble sizes on assimilation performances are also explored. On the basis of comparisons between the SIR-PF and the EAKF, a mixture filter, called ensemble adjustment Kalman particle filter(EAKPF), is proposed to combine their both merits. Similar to the ensemble Kalman particle filter, which combines the stochastic En KF and SIR-PF analysis schemes with a tuning parameter, the new mixture filter essentially provides a continuous interpolation between the EAKF and SIR-PF. The same Lorenz '63 model is used as a testbed, showing that the EAKPF is able to overcome filter degeneracy while maintaining the non-Gaussian nature, and performs better than the EAKF given limited ensemble size. 展开更多
关键词 data assimilation ensemble adjustment Kalman filter particle filter bayesian estimation ensemble adjustment Kalman particle filter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部