In the paper, an iterative method is presented to the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is ...In the paper, an iterative method is presented to the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models are developed for the optimal control of batch processes where end-point properties are required. The model parameters are selected within the Bayesian evidence framework. Based on the model, an iterative method is used to exploit the repetitive nature of batch processes to determine the optimal operating policy. Numerical simulation shows that the iterative optimal control can improve the process performance through iterations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.60504033)
文摘In the paper, an iterative method is presented to the optimal control of batch processes. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models are developed for the optimal control of batch processes where end-point properties are required. The model parameters are selected within the Bayesian evidence framework. Based on the model, an iterative method is used to exploit the repetitive nature of batch processes to determine the optimal operating policy. Numerical simulation shows that the iterative optimal control can improve the process performance through iterations.