目的比较BIC估计法与MCMC近似法两种后验概率法在贝叶斯基准剂量估计中的稳健性,并为山西省洪洞县儿童羟基代谢物可接受剂量的制定提供参考建议。方法首先介绍基于BIC估计法和MCMC近似法计算后验权重的原理,模拟研究选用Integrated Risk...目的比较BIC估计法与MCMC近似法两种后验概率法在贝叶斯基准剂量估计中的稳健性,并为山西省洪洞县儿童羟基代谢物可接受剂量的制定提供参考建议。方法首先介绍基于BIC估计法和MCMC近似法计算后验权重的原理,模拟研究选用Integrated Risk Information System数据库中不同剂量-反应数据集共30个,分析比较两种方法的优劣,并在实例研究中采用权重法进行数据整合。结果模拟研究结果显示在所研究的30个数据集中BIC估计法在BMR为0.01时有4个数据集出现BMDL预测失败的情况,在BMR为0.001时有1个数据集出现BMD预测失败的情况,以及6个数据集出现BMDL预测失败的情况。MCMC近似法计算的BMD/BMDL在每一种模型都有70%以上的数据集高于BIC估计法得到的BMD/BMDL。实例分析表明符合洪洞县儿童体内羟基代谢物剂量-反应关系的模型有linear(P=0.13,β=14.3%)、logistic(P=0.06,β=9.5%)、Weibull(P=0.14,β=10.6%)、multistage(P=0.15,β=31.1%)、Hill(P=0.21,β=34.6%)。在BMR为0.001的情况下,洪洞县儿童体内八种羟基代谢物(2-OHN、1-OHN、9-OHF、2-OHF、2-OHphe、1-OHphe、1-OHBaP、3-OHBaP)的可接受剂量(μmol/mol)依次为0.577μmol/mol、1.546μmol/mol、8.135μmol/mol、0.359μmol/mol、0.120μmol/mol、0.098μmol/mol、0.044μmol/mol、0.003μmol/mol。结论MCMC近似法在BMD估计中具有较好的稳定性和鲁棒性。展开更多
针对双频段预失真模型复杂度高以及当前的模型优化算法不具有自适应性的问题,提出一种自适应的模型优化算法.采用双频段广义记忆多项式作为预失真模型,通过正交匹配追踪算法对原始模型的基函数项进行排序,每次迭代时用所有已挑选的基函...针对双频段预失真模型复杂度高以及当前的模型优化算法不具有自适应性的问题,提出一种自适应的模型优化算法.采用双频段广义记忆多项式作为预失真模型,通过正交匹配追踪算法对原始模型的基函数项进行排序,每次迭代时用所有已挑选的基函数项构成备选模型,推导了模型输出向量元素服从非独立同分布情况下的贝叶斯信息准则(Bayesian Information Criterion,BIC),并将BIC值最小的备选模型作为优化后模型,从而在原始模型稀疏度和拟合误差门限未知情况下,实现了模型的自适应优化.结果表明:优化后模型与原始模型相比,二者分别预失真后的信号在邻道功率比和归一化均方误差方面均非常接近,预失真效果良好,而模型的系数量减少了75%以上.展开更多
Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and poli...Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and policy making. However, data are subject to complexities by heterogeneity across host classes. The use of frequentist methods in biostatistics and epidemiology is common and is therefore extensively utilized in answering varied research questions. In this paper, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculosis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simulations. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison and selection. Among the models considered, unstructured heterogeneity model perfumes better in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identified as the dominant determinant of TB. We find clustering and heterogeneity of risk among high rate counties. Although the approaches are less than ideal, we hope that our formulations provide a useful stepping stone in the development of spatial methodology for the statistical analysis of risk from TB in Kenya.展开更多
文摘目的比较BIC估计法与MCMC近似法两种后验概率法在贝叶斯基准剂量估计中的稳健性,并为山西省洪洞县儿童羟基代谢物可接受剂量的制定提供参考建议。方法首先介绍基于BIC估计法和MCMC近似法计算后验权重的原理,模拟研究选用Integrated Risk Information System数据库中不同剂量-反应数据集共30个,分析比较两种方法的优劣,并在实例研究中采用权重法进行数据整合。结果模拟研究结果显示在所研究的30个数据集中BIC估计法在BMR为0.01时有4个数据集出现BMDL预测失败的情况,在BMR为0.001时有1个数据集出现BMD预测失败的情况,以及6个数据集出现BMDL预测失败的情况。MCMC近似法计算的BMD/BMDL在每一种模型都有70%以上的数据集高于BIC估计法得到的BMD/BMDL。实例分析表明符合洪洞县儿童体内羟基代谢物剂量-反应关系的模型有linear(P=0.13,β=14.3%)、logistic(P=0.06,β=9.5%)、Weibull(P=0.14,β=10.6%)、multistage(P=0.15,β=31.1%)、Hill(P=0.21,β=34.6%)。在BMR为0.001的情况下,洪洞县儿童体内八种羟基代谢物(2-OHN、1-OHN、9-OHF、2-OHF、2-OHphe、1-OHphe、1-OHBaP、3-OHBaP)的可接受剂量(μmol/mol)依次为0.577μmol/mol、1.546μmol/mol、8.135μmol/mol、0.359μmol/mol、0.120μmol/mol、0.098μmol/mol、0.044μmol/mol、0.003μmol/mol。结论MCMC近似法在BMD估计中具有较好的稳定性和鲁棒性。
文摘针对双频段预失真模型复杂度高以及当前的模型优化算法不具有自适应性的问题,提出一种自适应的模型优化算法.采用双频段广义记忆多项式作为预失真模型,通过正交匹配追踪算法对原始模型的基函数项进行排序,每次迭代时用所有已挑选的基函数项构成备选模型,推导了模型输出向量元素服从非独立同分布情况下的贝叶斯信息准则(Bayesian Information Criterion,BIC),并将BIC值最小的备选模型作为优化后模型,从而在原始模型稀疏度和拟合误差门限未知情况下,实现了模型的自适应优化.结果表明:优化后模型与原始模型相比,二者分别预失真后的信号在邻道功率比和归一化均方误差方面均非常接近,预失真效果良好,而模型的系数量减少了75%以上.
文摘Global spread of infectious disease threatens the well-being of human, domestic, and wildlife health. A proper understanding of global distribution of these diseases is an important part of disease management and policy making. However, data are subject to complexities by heterogeneity across host classes. The use of frequentist methods in biostatistics and epidemiology is common and is therefore extensively utilized in answering varied research questions. In this paper, we applied the hierarchical Bayesian approach to study the spatial distribution of tuberculosis in Kenya. The focus was to identify best fitting model for modeling TB relative risk in Kenya. The Markov Chain Monte Carlo (MCMC) method via WinBUGS and R packages was used for simulations. The Deviance Information Criterion (DIC) proposed by [1] was used for models comparison and selection. Among the models considered, unstructured heterogeneity model perfumes better in terms of modeling and mapping TB RR in Kenya. Variation in TB risk is observed among Kenya counties and clustering among counties with high TB Relative Risk (RR). HIV prevalence is identified as the dominant determinant of TB. We find clustering and heterogeneity of risk among high rate counties. Although the approaches are less than ideal, we hope that our formulations provide a useful stepping stone in the development of spatial methodology for the statistical analysis of risk from TB in Kenya.