期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于AESL-GA的BN球磨机滚动轴承故障诊断方法 被引量:2
1
作者 王进花 汤国栋 +1 位作者 曹洁 李亚洁 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1138-1146,共9页
针对基于知识的贝叶斯网络(BN)构建方法存在不完全和不精确的缺点,提出一种基于知识引导和数据挖掘的BN结构构建方法。针对单一信号故障诊断结果不精确的问题和故障信息中存在的不确定性问题,将电流信号与振动信号融合建立BN的特征节点... 针对基于知识的贝叶斯网络(BN)构建方法存在不完全和不精确的缺点,提出一种基于知识引导和数据挖掘的BN结构构建方法。针对单一信号故障诊断结果不精确的问题和故障信息中存在的不确定性问题,将电流信号与振动信号融合建立BN的特征节点,分别提取2种信号的故障特征参数,利用区分度指标法进行特征筛选,将其作为BN结构特征层的节点。将专家知识构建的初始BN结构结合自适应精英结构遗传算法(AESL-GA)进行结构优化,通过自适应限制进化过程中的搜索空间,减少自由参数的数量,提高其全局搜索能力,得到最优BN结构。通过MQY5585溢流型球磨机滚动轴承实测数据和Paderborn University轴承数据集对所提方法进行验证,结果证明了所提方法的有效性。 展开更多
关键词 贝叶斯网络 故障诊断 自适应精英结构遗传算法 滚动轴承 信号融合
下载PDF
基于半监督学习的视频检索相关反馈算法
2
作者 邓丽 金立左 费敏锐 《计算机工程》 CAS CSCD 北大核心 2011年第22期281-283,共3页
小样本问题会制约贝叶斯相关反馈算法的学习能力。为此,提出一种基于半监督学习的视频检索贝叶斯相关反馈算法,其中一个分类器用于估计视频库中每一个镜头属于目标镜头的概率,另一个半监督学习分类器用于判断用户未标记镜头是否与目标相... 小样本问题会制约贝叶斯相关反馈算法的学习能力。为此,提出一种基于半监督学习的视频检索贝叶斯相关反馈算法,其中一个分类器用于估计视频库中每一个镜头属于目标镜头的概率,另一个半监督学习分类器用于判断用户未标记镜头是否与目标相关,由此扩大贝叶斯学习器的训练数据集,提高其分类能力。实验结果表明,该算法提高了贝叶斯算法的检索性能。 展开更多
关键词 视频检索 相关反馈 半监督学习 贝叶斯学习器 未标记样本
下载PDF
基于学习者求助行为的论坛回答者推荐研究 被引量:3
3
作者 叶俊民 赵丽娴 +2 位作者 罗达雄 王志锋 陈曙 《小型微型计算机系统》 CSCD 北大核心 2019年第3期493-498,共6页
在在线学习环境中,依据学习者的行为为其推荐合适的问题回答者,可有效提高其学习效果.目前许多的问题回答者推荐研究考虑到了问答数据,但没有考虑行为因素对推荐问题回答者的影响.本文结合问答数据与学生行为数据,提出了一种论坛问题回... 在在线学习环境中,依据学习者的行为为其推荐合适的问题回答者,可有效提高其学习效果.目前许多的问题回答者推荐研究考虑到了问答数据,但没有考虑行为因素对推荐问题回答者的影响.本文结合问答数据与学生行为数据,提出了一种论坛问题回答者的推荐方法.该方法的基本思路是:获取学习者求助行为类别;根据学习者求助行为类别为其推荐论坛问题回答者.为此,采用聚类算法处理学习者的求助行为数据并得到该学习者求助行为类别标签;采用此学习者求助行为数据和求助行为类别标签作为训练数据,训练朴素贝叶斯模型,从而自动识别新的学习者求助行为的类别;在此基础上,提出使用卷积神经网络方法构建论坛回答者推荐模型.通过对采集到的在线学习求助行为数据进行实验,说明了该方法能为学习者有效推荐合适的论坛回答者. 展开更多
关键词 求助行为 论坛回答者推荐 朴素贝叶斯模型 卷积神经网络
下载PDF
基于不满意度的网络安全模型 被引量:1
4
作者 王海晟 桂小林 《计算机应用研究》 CSCD 北大核心 2013年第2期566-569,共4页
提出了一种基于不满意度的网络安全模型,主要功能是帮助用户在网络环境中正确地选择交易对象,屏蔽恶意节点,基于不满意度(degree of dissatisfaction,DoD)对交易节点进行分类控制。节点的不满意度定义为该节点属于恶意节点集的概率。a)... 提出了一种基于不满意度的网络安全模型,主要功能是帮助用户在网络环境中正确地选择交易对象,屏蔽恶意节点,基于不满意度(degree of dissatisfaction,DoD)对交易节点进行分类控制。节点的不满意度定义为该节点属于恶意节点集的概率。a)使用粗糙集(rough set)模块与Bayesian学习器计算节点的不满意度,依据节点的交易历史记录计算节点的本地不满意度(local DoD,LDoD),依据反馈推荐意见计算推荐不满意度(recom-mended DoD,RDoD),基于不满意度将节点划分为可信任节点、陌生节点、恶意节点等不同的类型;b)基于推荐意见的信息熵(information entropy)计算其可信度,对反馈推荐意见进行综合。实验表明,与已有的安全模型相比,提出的安全管理模型对恶意节点具有更高的检测率,具有更满意的交易成功率。 展开更多
关键词 网络安全模型 不满意度 粗糙集 贝叶斯学习器 信息熵 仿真
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部