Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an e...Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an example that heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN. The main contribution of our approach is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between our method and state-of-the-art solution are conducted. The results show that our method is dominantly superior to state-of-the-art solution in solving the problem of learning BN.展开更多
As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve t...As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit(ONU) and to perform complex services awareness from the whole view of system in optical line terminal(OLT). Simulation results show that the proposed scheme is able to achieve better quality of services(Qo S), in terms of packet loss rate and time delay.展开更多
基金supported by National Natural Science Foundation of China (No.60970055)
文摘Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an example that heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN. The main contribution of our approach is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between our method and state-of-the-art solution are conducted. The results show that our method is dominantly superior to state-of-the-art solution in solving the problem of learning BN.
基金supported by the Science and Technology Project of State Grid Corporation of China:"Research on the Power-Grid Services Oriented"IP+Optics"Coordination Choreography Technology"
文摘As the speed of optical access networks soars with ever increasing multiple services, the service-supporting ability of optical access networks suffers greatly from the shortage of service awareness. Aiming to solve this problem, a hierarchy Bayesian model based services awareness mechanism is proposed for high-speed optical access networks. This approach builds a so-called hierarchy Bayesian model, according to the structure of typical optical access networks. Moreover, the proposed scheme is able to conduct simple services awareness operation in each optical network unit(ONU) and to perform complex services awareness from the whole view of system in optical line terminal(OLT). Simulation results show that the proposed scheme is able to achieve better quality of services(Qo S), in terms of packet loss rate and time delay.