Bayesian inference method has been presented in this paper for the modeling of operational risk. Bank internal and external data are divided into defined loss cells and then fitted into probability distributions. The ...Bayesian inference method has been presented in this paper for the modeling of operational risk. Bank internal and external data are divided into defined loss cells and then fitted into probability distributions. The distribution parameters and their uncertainties are estimated from posterior distributions derived using the Bayesian inference. Loss frequency is fitted into Poisson distributions. While the Poisson parameters, in a similar way, are defined by a posterior distribution developed using Bayesian inference. Bank operation loss typically has some low frequency but high magnitude loss data. These heavy tail low frequency loss data are divided into several buckets where the bucket frequencies are defined by the experts. A probability distribution, as defined by the internal and external data, is used for these data. A Poisson distribution is used for the bucket frequencies. However instead of using any distribution of the Poisson parameters, point estimations are used. Monte Carlo simulation is then carried out to calculate the capital charge of the in- ternal as well as the heavy tail high profile low frequency losses. The output of the Monte Carlo simulation defines the capital requirement that has to be allocated to cover potential operational risk losses for the next year.展开更多
In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree wa...In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree was converted into five different Bayesian network models. The Bayesian network with the minimum conditional probability table specification and the highest computation efficiency was selected as the optimal network. The two heuristics were used to optimize the Bayesian network. The fault diagnosis and causal reasoning of the system were implemented by using the selected Bayesian network. The calculation methods of Fussel-Vesely( FV),risk reduction worth( RRW),Birnbaum measure( BM) and risk achievement worth( RAW) importances were presented. A certain engine was taken as an application example to illustrate the proposed method. The results show that not only the correlation of the relevant variables in the system can be accurately expressed and the calculation complexity can be reduced,but also the relatively weak link in the system can be located accurately.展开更多
In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale par...In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance.展开更多
The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on fa...The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.展开更多
This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurr...This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.展开更多
Wind power is a kind of clean energy promising significant social and environmental benefits, and in The Peoples Republic of China, the government supports and encourages the development of wind power as one element i...Wind power is a kind of clean energy promising significant social and environmental benefits, and in The Peoples Republic of China, the government supports and encourages the development of wind power as one element in a shift to renewable energy. In recent years however, maritime safety issues have arisen during offshore wind power construction and attendant production processes associated with the rapid promotion and development of offshore wind farms. Therefore, it is necessary to carry out risk assessment for phases in the life cycle of offshore wind farms. This paper reports on a risk assessment model based on a Dynamic Bayesian network that performs offshore wind farms maritime risk assessment. The advantage of this approach is the way in which a Bayesian model expresses uncertainty. Furthermore, such models permit simulations and reenactment of accidents in a virtual environment. There were several goals in this research. Offshore wind power project risk identification and evaluation theories and methods were explored to identify the sources of risk during different phases of the offshore wind farm life cycle. Based on this foundation, a dynamic Bayesian network model with Genie was established, and evaluated, in terms of its effectiveness for analysis of risk during different phases of the offshore wind farm life cycle. Research results show that a dynamic Bayesian network method can perform risk assessments effectively and flexibly, responding to the actual context of offshore wind power construction. Historical data and almost real-time information are combined to analyze the risk of the construction of offshore wind power. Our results inform a discussion of security and risk mitigation measures that when implemented, could improve safety. This work has value as a reference and guide for the safe development of offshore wind power.展开更多
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me...New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.展开更多
Comprehensive evaluation and warning is very important and difficult in food safety. This paper mainly focuses on introducing the application of using big data mining in food safety warning field. At first,we introduc...Comprehensive evaluation and warning is very important and difficult in food safety. This paper mainly focuses on introducing the application of using big data mining in food safety warning field. At first,we introduce the concept of big data miming and three big data methods. At the same time,we discuss the application of the three big data miming methods in food safety areas. Then we compare these big data miming methods,and propose how to apply Back Propagation Neural Network in food safety risk warning.展开更多
This paper attempts to provide an overview of risk assessment and management practice in underground rock engineering based on a review of the international literature and some personal experience. It is noted that th...This paper attempts to provide an overview of risk assessment and management practice in underground rock engineering based on a review of the international literature and some personal experience. It is noted that the terminologies used in risk assessment and management studies may vary from country to country. Probabilistic risk analysis is probably the most widely-used approach to risk assessment in rock engineering and in geotechnical engineering more broadly. It is concluded that great potential exists to augment the existing probabilistic methods by the use of Bayesian networks and decision analysis techniques to allow reasoning under uncertainty and to update probabilities, material properties and analyses as further data become available throughout the various stages of a project. Examples are given of the use of these methods in underground excavation engineering in China and elsewhere, and opportunities for their further application are identified.展开更多
The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment and to their compromised security and reliability. In the quantitative risk analysis, the failure mode...The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment and to their compromised security and reliability. In the quantitative risk analysis, the failure models are difficult to establish through traditional statistical methods. Hence, the calculation of the occurrence probability of small sample events is often met with great uncertainty. In this study, the Bayesian statistical method is implemented to analyze the oil and gas leakages of FPSO internal turret, which is a typical small sample risk but could lead to severe losses.According to the corresponding failure mechanism, two Bayesian statistical models using the Weibull distribution and logarithmic normal distribution as the population distribution are established, and the posterior distribution of the corresponding parameters is calculated. The optimal Bayesian statistical model is determined according to the Bayesian information criterion and Akaike criterion. On the basis of the determined optimal model, the corresponding reliability index is solved to provide basic data for the subsequent risk assessments of FPSO systems.展开更多
A complex mechatronics system Bayesian plan of demonstration test is studied based on the mixed beta distribution. During product design and improvement various information is appropriately considered by introducing i...A complex mechatronics system Bayesian plan of demonstration test is studied based on the mixed beta distribution. During product design and improvement various information is appropriately considered by introducing inheritance factor, moreover, the inheritance factor is thought as a random variable, and the Bayesian decision of the qualification test plan is obtained, and the correctness of a Bayesian model presented is verified. The results show that the quantity of the test is too conservative according to classical methods under small binomial samples. Although traditional Bayesian analysis can consider test information of related or similar products, it ignores differences between such products. The method has solved the above problem, furthermore, considering the requirement in many practical projects, the differences among this method, the classical method and Bayesian with beta distribution are compared according to the plan of reliability acceptance test.展开更多
In order to protect the website and assess the security risk of website, a novel website security risk assessment method is proposed based on the improved Bayesian attack graph(I-BAG) model. First, the Improved Bayesi...In order to protect the website and assess the security risk of website, a novel website security risk assessment method is proposed based on the improved Bayesian attack graph(I-BAG) model. First, the Improved Bayesian attack graph model is established, which takes attack benefits and threat factors into consideration. Compared with the existing attack graph models, it can better describe the website's security risk. Then, the improved Bayesian attack graph is constructed with optimized website attack graph, attack benefit nodes, threat factor nodes and the local conditional probability distribution of each node, which is calculated accordingly. Finally, website's attack probability and risk value are calculated on the level of nodes, hosts and the whole website separately. The experimental results demonstrate that the risk evaluating method based on I-BAG model proposed is a effective way for assessing the website security risk.展开更多
文摘Bayesian inference method has been presented in this paper for the modeling of operational risk. Bank internal and external data are divided into defined loss cells and then fitted into probability distributions. The distribution parameters and their uncertainties are estimated from posterior distributions derived using the Bayesian inference. Loss frequency is fitted into Poisson distributions. While the Poisson parameters, in a similar way, are defined by a posterior distribution developed using Bayesian inference. Bank operation loss typically has some low frequency but high magnitude loss data. These heavy tail low frequency loss data are divided into several buckets where the bucket frequencies are defined by the experts. A probability distribution, as defined by the internal and external data, is used for these data. A Poisson distribution is used for the bucket frequencies. However instead of using any distribution of the Poisson parameters, point estimations are used. Monte Carlo simulation is then carried out to calculate the capital charge of the in- ternal as well as the heavy tail high profile low frequency losses. The output of the Monte Carlo simulation defines the capital requirement that has to be allocated to cover potential operational risk losses for the next year.
基金National Natural Science Foundations of China(Nos.61164009,61463021)the Science Foundation of Education Commission of Jiangxi Province,China(No.GJJ14420)+1 种基金the Young Scientists Object Program of Jiangxi Province,China(No.20144BCB23037)the Graduate Innovation Foundation of Jiangxi Province,China(No.YC2014-S364)
文摘In order to reduce the calculation of the failure probability in the complex mechanical system reliability risk evaluation,and to implement importance analysis of system components effectively,the system fault tree was converted into five different Bayesian network models. The Bayesian network with the minimum conditional probability table specification and the highest computation efficiency was selected as the optimal network. The two heuristics were used to optimize the Bayesian network. The fault diagnosis and causal reasoning of the system were implemented by using the selected Bayesian network. The calculation methods of Fussel-Vesely( FV),risk reduction worth( RRW),Birnbaum measure( BM) and risk achievement worth( RAW) importances were presented. A certain engine was taken as an application example to illustrate the proposed method. The results show that not only the correlation of the relevant variables in the system can be accurately expressed and the calculation complexity can be reduced,but also the relatively weak link in the system can be located accurately.
基金Supported by the National Natural Science Foundation of China(71571144,71401134,71171164,11701406) Supported by the International Cooperation and Exchanges in Science and Technology Program of Shaanxi Province(2016KW-033)
文摘In this paper, we construct a Bayesian framework combining Type-Ⅰ progressively hybrid censoring scheme and competing risks which are independently distributed as exponentiated Weibull distribution with one scale parameter and two shape parameters. Since there exist unknown hyper-parameters in prior density functions of shape parameters, we consider the hierarchical priors to obtain the individual marginal posterior density functions,Bayesian estimates and highest posterior density credible intervals. As explicit expressions of estimates cannot be obtained, the componentwise updating algorithm of Metropolis-Hastings method is employed to compute the numerical results. Finally, it is concluded that Bayesian estimates have a good performance.
文摘The uncertainty during the period of software project development often brings huge risks to contractors and clients. If we can find an effective method to predict the cost and quality of software projects based on facts like the project character and two-side cooperating capability at the beginning of the project,we can reduce the risk. Bayesian Belief Network(BBN) is a good tool for analyzing uncertain consequences, but it is difficult to produce precise network structure and conditional probability table.In this paper,we built up network structure by Delphi method for conditional probability table learning,and learn update probability table and nodes’confidence levels continuously according to the application cases, which made the evaluation network have learning abilities, and evaluate the software development risk of organization more accurately.This paper also introduces EM algorithm, which will enhance the ability to produce hidden nodes caused by variant software projects.
基金This project is funded bythe UK Engineering and Physical Sciences Research Council (EPSRC) under Grant Refer-ences:GR/S85504 and GR/S85498
文摘This paper presents a new approach for offshore risk analysis that is capable of dealing with linguistic probabilities in Bayesian networks ( BNs). In this paper, linguistic probabilities are used to describe occurrence likelihood of hazardous events that may cause possible accidents in offshore operations. In order to use fuzzy information, an f-weighted valuation function is proposed to transform linguistic judgements into crisp probability distributions which can be easily put into a BN to model causal relationships among risk factors. The use of linguistic variables makes it easier for human experts to express their knowledge, and the transformation of linguistic judgements into crisp probabilities can significantly save the cost of computation, modifying and maintaining a BN model. The flexibility of the method allows for multiple forms of information to be used to quantify model relationships, including formally assessed expert opinion when quantitative data are lacking, or when only qualitative or vague statements can be made. The model is a modular representation of uncertain knowledge caused due to randomness, vagueness and ignorance. This makes the risk analysis of offshore engineering systems more functional and easier in many assessment contexts. Specifically, the proposed f-weighted valuation function takes into account not only the dominating values, but also the a-level values that are ignored by conventional valuation methods. A case study of the collision risk between a Floating Production, Storage and Off-loading (FPSO) unit and the anthorised vessels due to human elements during operation is used to illustrate the application of the proposed model.
文摘Wind power is a kind of clean energy promising significant social and environmental benefits, and in The Peoples Republic of China, the government supports and encourages the development of wind power as one element in a shift to renewable energy. In recent years however, maritime safety issues have arisen during offshore wind power construction and attendant production processes associated with the rapid promotion and development of offshore wind farms. Therefore, it is necessary to carry out risk assessment for phases in the life cycle of offshore wind farms. This paper reports on a risk assessment model based on a Dynamic Bayesian network that performs offshore wind farms maritime risk assessment. The advantage of this approach is the way in which a Bayesian model expresses uncertainty. Furthermore, such models permit simulations and reenactment of accidents in a virtual environment. There were several goals in this research. Offshore wind power project risk identification and evaluation theories and methods were explored to identify the sources of risk during different phases of the offshore wind farm life cycle. Based on this foundation, a dynamic Bayesian network model with Genie was established, and evaluated, in terms of its effectiveness for analysis of risk during different phases of the offshore wind farm life cycle. Research results show that a dynamic Bayesian network method can perform risk assessments effectively and flexibly, responding to the actual context of offshore wind power construction. Historical data and almost real-time information are combined to analyze the risk of the construction of offshore wind power. Our results inform a discussion of security and risk mitigation measures that when implemented, could improve safety. This work has value as a reference and guide for the safe development of offshore wind power.
基金supported by the Research Grants Council of the Hong Kong SAR Government(Grant Nos.16202716 and C6012-15G)
文摘New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed.
基金Supported by Soft Science Research Project of Guizhou Province(R20142023)Key Youth Fund Project of Guizhou Academy of Sciences(J201402)
文摘Comprehensive evaluation and warning is very important and difficult in food safety. This paper mainly focuses on introducing the application of using big data mining in food safety warning field. At first,we introduce the concept of big data miming and three big data methods. At the same time,we discuss the application of the three big data miming methods in food safety areas. Then we compare these big data miming methods,and propose how to apply Back Propagation Neural Network in food safety risk warning.
文摘This paper attempts to provide an overview of risk assessment and management practice in underground rock engineering based on a review of the international literature and some personal experience. It is noted that the terminologies used in risk assessment and management studies may vary from country to country. Probabilistic risk analysis is probably the most widely-used approach to risk assessment in rock engineering and in geotechnical engineering more broadly. It is concluded that great potential exists to augment the existing probabilistic methods by the use of Bayesian networks and decision analysis techniques to allow reasoning under uncertainty and to update probabilities, material properties and analyses as further data become available throughout the various stages of a project. Examples are given of the use of these methods in underground excavation engineering in China and elsewhere, and opportunities for their further application are identified.
基金financially supported by the National International Science and Technology Cooperation Specific Projectthe Development of Risk Assessment Software for Floating Offshore Wind Turbine(Grant No.2013DFE73060)the Development of Failure Database and Risk Assessment System for FPSO(Grant No.G014614002)
文摘The load and corrosion caused by the harsh marine environment lead to the severe degradation of offshore equipment and to their compromised security and reliability. In the quantitative risk analysis, the failure models are difficult to establish through traditional statistical methods. Hence, the calculation of the occurrence probability of small sample events is often met with great uncertainty. In this study, the Bayesian statistical method is implemented to analyze the oil and gas leakages of FPSO internal turret, which is a typical small sample risk but could lead to severe losses.According to the corresponding failure mechanism, two Bayesian statistical models using the Weibull distribution and logarithmic normal distribution as the population distribution are established, and the posterior distribution of the corresponding parameters is calculated. The optimal Bayesian statistical model is determined according to the Bayesian information criterion and Akaike criterion. On the basis of the determined optimal model, the corresponding reliability index is solved to provide basic data for the subsequent risk assessments of FPSO systems.
基金National Advanced Research Project of China(No.51319030302)National Advanced Research Foundation of China(No.9140A 19030506KG0166)
文摘A complex mechatronics system Bayesian plan of demonstration test is studied based on the mixed beta distribution. During product design and improvement various information is appropriately considered by introducing inheritance factor, moreover, the inheritance factor is thought as a random variable, and the Bayesian decision of the qualification test plan is obtained, and the correctness of a Bayesian model presented is verified. The results show that the quantity of the test is too conservative according to classical methods under small binomial samples. Although traditional Bayesian analysis can consider test information of related or similar products, it ignores differences between such products. The method has solved the above problem, furthermore, considering the requirement in many practical projects, the differences among this method, the classical method and Bayesian with beta distribution are compared according to the plan of reliability acceptance test.
基金supported by the project of the State Key Program of National Natural Science Foundation of China (No. 90818021)supported by a grant from the national high technology research and development program of China (863program) (No.2012AA012903)
文摘In order to protect the website and assess the security risk of website, a novel website security risk assessment method is proposed based on the improved Bayesian attack graph(I-BAG) model. First, the Improved Bayesian attack graph model is established, which takes attack benefits and threat factors into consideration. Compared with the existing attack graph models, it can better describe the website's security risk. Then, the improved Bayesian attack graph is constructed with optimized website attack graph, attack benefit nodes, threat factor nodes and the local conditional probability distribution of each node, which is calculated accordingly. Finally, website's attack probability and risk value are calculated on the level of nodes, hosts and the whole website separately. The experimental results demonstrate that the risk evaluating method based on I-BAG model proposed is a effective way for assessing the website security risk.