Learning the Markov blanket(MB)of a given variable has received increasing attention in recent years because the MB of a variable predicts its local causal relationship with other variables.Online MB Learning can lear...Learning the Markov blanket(MB)of a given variable has received increasing attention in recent years because the MB of a variable predicts its local causal relationship with other variables.Online MB Learning can learn MB for a given variable on the fly.However,in some application scenarios,such as image analysis and spam filtering,features may arrive by groups.Existing online MB learning algorithms evaluate features individually,ignoring group structure.Motivated by this,we formulate the group MB learning with streaming features problem,and propose an Online MB learning with Group Structure algorithm,OMBGS,to identify the MB of a class variable within any feature group and under current feature space on the fly.Extensive experiments on benchmark Bayesian network datasets demonstrate that the proposed algorithm outperforms the state-of-the-art standard and online MB learning algorithms.展开更多
In order to estimate traffic flow a Bayesian network BN model using prior link flows is proposed.This model sets link flows as parents of the origin-destination OD flows. Under normal distribution assumptions the mode...In order to estimate traffic flow a Bayesian network BN model using prior link flows is proposed.This model sets link flows as parents of the origin-destination OD flows. Under normal distribution assumptions the model considers the level of total traffic flow the variability of link flows and the violation of the conservation law.Using prior link flows the prior distribution of all the variables is determined. By updating some observed link flows the posterior distribution is given.The variances of the posterior distribution normally decrease with the progressive update of the link flows. Based on the posterior distribution point estimations and the corresponding probability intervals are provided. To remove inconsistencies in OD matrices estimation and traffic assignment a combined BN and stochastic user equilibrium model is proposed in which the equilibrium solution is obtained through iterations.Results of the numerical example demonstrate the efficiency of the proposed BN model and the combined method.展开更多
Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an impor...Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an important avenue for prevention and treatment of integrated Chinese and Western medicine. The idea here is first to divide all patients suffering from a disease of WM into several groups in the light of the stage of the disease, and secondly to identify basic syndromes feature in a distinct stage, and finally to achieve the purpose of syndrome differentiation. Syndrome differentiation is simply taken as a classifier that classifies patients into distinct classes primarily based on overall observation of their symptoms. Previous clustering methods are unable to cope with the complexity of CM. We therefore show a new multi-dimensional clustering method in the form of general latent structure (GLS) model, which is a suitable statistical learning technique of latent class analysis. In this paper, we learn an optimal GLS model which reflects much better model quality compared with other latent class models from the osteoporosis patient of community women (OPCW) real data including 40 65 year old women whose bone mineral density (BMD) is less than mean2.0 standard deviation (M 2.0SD). Further, we illustrate a case analysis of statistical identification of CM syndromes feature and structure of OPCW from qualitative and quantitative contents through the GLS model. Our analysis has discovered natural clusters and structures that correspond well to CM basic syndrome and factors of osteoporosis patients (OP). The GLS model suggests the possibility of establishing objective and quantitative diagnosis standards for syndrome differentiation on OPCW. Hence, for the future it can provide a reference for the similar study from the perspective of a combination of disease differentiation and syndrome differentiation.展开更多
Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectr...Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition.展开更多
基金supported by the National Natural Science Foundation of China[No.62272001,No.U1936220,No.61872002,No.61876206 and No.62006003]The National Key Research and Development Program of China[No.2019YFB1704101]the Natural Science Foundation of Anhui Province of China[No.2108085QF270].
文摘Learning the Markov blanket(MB)of a given variable has received increasing attention in recent years because the MB of a variable predicts its local causal relationship with other variables.Online MB Learning can learn MB for a given variable on the fly.However,in some application scenarios,such as image analysis and spam filtering,features may arrive by groups.Existing online MB learning algorithms evaluate features individually,ignoring group structure.Motivated by this,we formulate the group MB learning with streaming features problem,and propose an Online MB learning with Group Structure algorithm,OMBGS,to identify the MB of a class variable within any feature group and under current feature space on the fly.Extensive experiments on benchmark Bayesian network datasets demonstrate that the proposed algorithm outperforms the state-of-the-art standard and online MB learning algorithms.
基金The National Natural Science Foundation of China(No.51078085,51178110)
文摘In order to estimate traffic flow a Bayesian network BN model using prior link flows is proposed.This model sets link flows as parents of the origin-destination OD flows. Under normal distribution assumptions the model considers the level of total traffic flow the variability of link flows and the violation of the conservation law.Using prior link flows the prior distribution of all the variables is determined. By updating some observed link flows the posterior distribution is given.The variances of the posterior distribution normally decrease with the progressive update of the link flows. Based on the posterior distribution point estimations and the corresponding probability intervals are provided. To remove inconsistencies in OD matrices estimation and traffic assignment a combined BN and stochastic user equilibrium model is proposed in which the equilibrium solution is obtained through iterations.Results of the numerical example demonstrate the efficiency of the proposed BN model and the combined method.
基金Supported by Items of Institute of Basic Research in Clinical Medicine,China Academy of Chinese Medical Sciences Natural Science Fundation(No.30873339)
文摘Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an important avenue for prevention and treatment of integrated Chinese and Western medicine. The idea here is first to divide all patients suffering from a disease of WM into several groups in the light of the stage of the disease, and secondly to identify basic syndromes feature in a distinct stage, and finally to achieve the purpose of syndrome differentiation. Syndrome differentiation is simply taken as a classifier that classifies patients into distinct classes primarily based on overall observation of their symptoms. Previous clustering methods are unable to cope with the complexity of CM. We therefore show a new multi-dimensional clustering method in the form of general latent structure (GLS) model, which is a suitable statistical learning technique of latent class analysis. In this paper, we learn an optimal GLS model which reflects much better model quality compared with other latent class models from the osteoporosis patient of community women (OPCW) real data including 40 65 year old women whose bone mineral density (BMD) is less than mean2.0 standard deviation (M 2.0SD). Further, we illustrate a case analysis of statistical identification of CM syndromes feature and structure of OPCW from qualitative and quantitative contents through the GLS model. Our analysis has discovered natural clusters and structures that correspond well to CM basic syndrome and factors of osteoporosis patients (OP). The GLS model suggests the possibility of establishing objective and quantitative diagnosis standards for syndrome differentiation on OPCW. Hence, for the future it can provide a reference for the similar study from the perspective of a combination of disease differentiation and syndrome differentiation.
文摘Most present research into facial expression recognition focuses on the visible spectrum, which is sen- sitive to illumination change. In this paper, we focus on in- tegrating thermal infrared data with visible spectrum images for spontaneous facial expression recognition. First, the ac- tive appearance model AAM parameters and three defined head motion features are extracted from visible spectrum im- ages, and several thermal statistical features are extracted from infrared (IR) images. Second, feature selection is per- formed using the F-test statistic. Third, Bayesian networks BNs and support vector machines SVMs are proposed for both decision-level and feature-level fusion. Experiments on the natural visible and infrared facial expression (NVIE) spontaneous database show the effectiveness of the proposed methods, and demonstrate thermal 1R images' supplementary role for visible facial expression recognition.