In this paper, we explored the characteristics of the interference effects between perturbative states in hyperfine induced 2s2p ^3p0,^3p2→ 2s^21S0 transitions of Be-like ions. It was found that the interference effe...In this paper, we explored the characteristics of the interference effects between perturbative states in hyperfine induced 2s2p ^3p0,^3p2→ 2s^21S0 transitions of Be-like ions. It was found that the interference effects non-monotonically change with increasing atomic number Z in these two transitions. The strongest interference effect is near Z = 9 for 2s2p^3P0→2s^21S0 transition and near Z = 7 for the other.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetabl...Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].展开更多
Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages...Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.展开更多
Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within...Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.展开更多
The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions.Based on the high symmetry of the quantum anomalous Hall model,the findings suggest a one-to-one correspondence ...The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions.Based on the high symmetry of the quantum anomalous Hall model,the findings suggest a one-to-one correspondence between the average spin texture and the Floquet quasi-energy spectrum.A new approach is proposed to directly measure the quasienergy spectrum,replacing previous measurements of the average spin texture.Finally,we proposed a reliable experimental scheme based on ion trap platforms.This scheme markedly reduces the measurement workload,improves the measurement fidelity,and is applicable to multiple platforms such as cold atoms and nuclear magnetic resonance.展开更多
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials...Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.展开更多
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE...Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.展开更多
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic...The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.展开更多
As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in a...As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in aqueous solutions.Polymers are a kind of potential electro-active materials for aqueous NH_(4)^(+)storage.However,traditional polymer electrodes are typically created by covering the bulky collectors with excessive additives,which could lead to low volume capacity and unsatisfactory stability.Herein,a nanoparticle-like polyimide(PI)was synthesized and then combined with MXene nanosheets to synergistically construct an additive-free and self-standing PI@MXene composite electrode.Significantly,the redox-active PI nanoparticles are enclosed between conductive MXene flakes to create a 3D lamination-like network that promotes electron transmission,while theπ-πinteractions existing between PI and MXene contribute to the enhanced structural integrity and stability within the composite electrode.As such,it delivers superior aqueous NH_(4)^(+)storage behaviors in terms of a notable specific capacity of 110.7 mA·h·cm^(–3) and a long lifespan with only 0.0064%drop each cycle.Furthermore,in-situ Raman and UV–Vis examinations provide evidence of reversible and stable redox mechanism of the PI@MXene composite electrode during NH_(4)^(+)uptake/removal,highlighting its significance in the area of electrochemical energy storage.展开更多
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t...In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.展开更多
This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid ...This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k_‖=7.5 m^(-1),falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
We deposited indium-tin-oxide(ITO)films on silicon and quartz substrates by magnetron sputtering technology in pure argon.Using electrostatic quadrupole plasma diagnostic technology,we investigate the effects of disch...We deposited indium-tin-oxide(ITO)films on silicon and quartz substrates by magnetron sputtering technology in pure argon.Using electrostatic quadrupole plasma diagnostic technology,we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface,with special attention to the production of high-energy negative oxygen ions,and elucidate the mechanism behind its production.At the same time,the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films.Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide(TCO)thin films,this study provides valuable physical understanding of optimization of TCO thin film deposition process.展开更多
MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser dep...MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser deposition(PLD)of thin films on graphene oxide substrates was also realized.An Nd:YAG laser,operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy,in a single pulse or at a 10 Hz repetition rate,was employed.Ablation yield was measured as a function of the laser fluence.Plasma was characterized using different analysis techniques,such as time-of-flight measurements,quadrupole mass spectrometry and fast CCD visible imaging.The so-produced films were characterized by composition,thickness,roughness,wetting ability,and morphology.When compared to the MoS_(2)targets,they show a slight decrease of S with respect to Mo,due to higher ablation yield,low fusion temperature and high sublimation in vacuum.The pulsed IR laser deposited Mo Sx(with 1<x<2)films are uniform,with a thickness of about 130 nm,a roughness of about 50 nm and a higher wettability than the MoS_(2)targets.Some potential applications of the pulsed IR laser-deposited Mo Sx films are also presented and discussed.展开更多
Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and d...Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and divertor plasma transport in magnetically confined fusion research.On the J-TEXT tokamak,a multi-channel retarding field analyzer(RFA) probe has been developed to study average plasma parameters in the edge region under various poloidal divertor and island divertor configurations.The edge radial profile of the ion-to-electron temperature ratio,τ_(i/e),has been determined,which gradually decreases as the SOL ion self-collisionality,v_(SOL)*,increases.This is broadly consistent with what has been observed previously from various tokamak experiments.However,the comparison of experimental results under different configurations shows that in the poloidal divertor configuration,even under the same v_(SOL)*,τ_(i/e) in the SOL region becomes smaller as the distance from the X-point to the target plate increases.In the island divertor configuration,τ_(i/e) near the O-point is higher than that near the X-point at the same v_(SOL)*,and both are higher than those in the limiter configuration.These results suggest that the magnetic configuration plays a critical role in the energy distributions between electrons and ions at the plasma boundary.展开更多
基金supported by National Natural Science Foundation of China (Nos. 10774122, 10876028)the specialized Research Fund for the Doctoral Program of Higher Education of China (No.20070736001)the Foundation of Northwest Normal University of China (NWNU-KJCXGC-03-21)
文摘In this paper, we explored the characteristics of the interference effects between perturbative states in hyperfine induced 2s2p ^3p0,^3p2→ 2s^21S0 transitions of Be-like ions. It was found that the interference effects non-monotonically change with increasing atomic number Z in these two transitions. The strongest interference effect is near Z = 9 for 2s2p^3P0→2s^21S0 transition and near Z = 7 for the other.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
文摘Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].
基金Science Development Foundation of Hubei University of Science&Technology,Grant/Award Numbers:2021F005,2021ZX14,2020TD01,2021ZX0Xianning City Program of Science&Technology,Grant/Award Number:2022ZRKX051Hubei University of Science and Technology Doctoral Research Initiation Project,Grant/Award Number:BK202217。
文摘Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.
文摘Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.
基金the National Natural Science Foun-dation of China(Grant Nos.11904402,12174447,12074433,12004430,and 12174448).
文摘The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions.Based on the high symmetry of the quantum anomalous Hall model,the findings suggest a one-to-one correspondence between the average spin texture and the Floquet quasi-energy spectrum.A new approach is proposed to directly measure the quasienergy spectrum,replacing previous measurements of the average spin texture.Finally,we proposed a reliable experimental scheme based on ion trap platforms.This scheme markedly reduces the measurement workload,improves the measurement fidelity,and is applicable to multiple platforms such as cold atoms and nuclear magnetic resonance.
基金supported by the grants from the Chinese Academy of Sciences(124GJHZ2023031MI)the National Natural Science Foundation of China(52173274)+1 种基金the National Key R&D Project from the Ministry of Science and Technology(2021YFA1201603)the Fundamental Research Funds for the Central Universities.
文摘Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金the financial support from the National Nature Science Foundation of China(No.U20A20249)the National Key Research and Development Program of China(2021YFB3800300)the Shenzhen Science and Technology Innovation Commission(KCXST20221021111216037)。
文摘Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.
基金supported by National Natural Science Foundation of China(Nos.U1967206 and 12275071)National Key R&D Program of China(No.2017YFE0301201)。
文摘The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient.
基金supported by the National Natural Science Foundation of China(52002157)the Undergraduate Research&Practice Innovation Program of Jiangsu Province(202310289033Z).
文摘As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in aqueous solutions.Polymers are a kind of potential electro-active materials for aqueous NH_(4)^(+)storage.However,traditional polymer electrodes are typically created by covering the bulky collectors with excessive additives,which could lead to low volume capacity and unsatisfactory stability.Herein,a nanoparticle-like polyimide(PI)was synthesized and then combined with MXene nanosheets to synergistically construct an additive-free and self-standing PI@MXene composite electrode.Significantly,the redox-active PI nanoparticles are enclosed between conductive MXene flakes to create a 3D lamination-like network that promotes electron transmission,while theπ-πinteractions existing between PI and MXene contribute to the enhanced structural integrity and stability within the composite electrode.As such,it delivers superior aqueous NH_(4)^(+)storage behaviors in terms of a notable specific capacity of 110.7 mA·h·cm^(–3) and a long lifespan with only 0.0064%drop each cycle.Furthermore,in-situ Raman and UV–Vis examinations provide evidence of reversible and stable redox mechanism of the PI@MXene composite electrode during NH_(4)^(+)uptake/removal,highlighting its significance in the area of electrochemical energy storage.
基金supported by National Natural Science Foundation of China(Nos.12305224,U23B2099 and 11975065)the Natural Science Foundation of Liaoning Province(No.2021-BS-223)+1 种基金the Liaoning Provincial Department of Education Youth Fund Project(No.LJKQZ20222309)supports from the National Laboratory of Heavy-ion Research Facility(HIRFL)in the Institute of Modern Physics in Lanzhou,China.
文摘In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.
基金supported by the National Magnetic Confinement Fusion Energy Program of China (No.2018 YFE0311300)the High-End Talents Program of Hebei Province, Innovative Approaches Towards Development of Carbon-Free Clean Fusion Energy (No.2021HBQZYCSB 006)the Compact Fusion Project of the ENN Group。
文摘This study investigates the single-pass absorption(SPA) of ion cyclotron range of frequency(ICRF) heating in hydrogen plasma of the EXL-50U spherical tokamak,which is an upgraded EXL-50 device with a central solenoid and a stronger magnetic field.The reliability of the kinetic dispersion equation is confirmed by the one-dimensional full-wave code,and the applicability of Porkolab's simplified theoretical SPA model is discussed based on the kinetic dispersion equation.Simulations are conducted to investigate the heating effects of the fundamental and second harmonic frequencies.The results indicate that with the design parameters of the EXL-50U device,the SPA for second harmonic heating is 63%,while the SPA for fundamental heating is 13%.Additionally,the optimal injection frequencies are 23 MHz at 0.9 T and 31 MHz at 1.2 T.The wave vector of the antenna parallel to the magnetic field,with a value of k_‖=7.5 m^(-1),falls within the optimal heating region.Simulations reveal that the ICRF heating system can play an important role in the ion heating of the EXL-50U.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金supported by the National Key R&D Program of China(Grant No.2022YFE03050001)the National Natural Science Foundation of China(Grant Nos.12175160 and 12305284).The authors thank Suzhou Maxwell Technologies Co.,Ltd.for partial hardware and particle financial support to carry out the research.
文摘We deposited indium-tin-oxide(ITO)films on silicon and quartz substrates by magnetron sputtering technology in pure argon.Using electrostatic quadrupole plasma diagnostic technology,we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface,with special attention to the production of high-energy negative oxygen ions,and elucidate the mechanism behind its production.At the same time,the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films.Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide(TCO)thin films,this study provides valuable physical understanding of optimization of TCO thin film deposition process.
基金supported by OP RDE,MEYS,Czech Republic under the project CANAM OP(No.CZ.02.1.01/0.0/0.0/16_013/0001812)by the Czech Science Foundation GACR(No.23-06702S)。
文摘MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser deposition(PLD)of thin films on graphene oxide substrates was also realized.An Nd:YAG laser,operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy,in a single pulse or at a 10 Hz repetition rate,was employed.Ablation yield was measured as a function of the laser fluence.Plasma was characterized using different analysis techniques,such as time-of-flight measurements,quadrupole mass spectrometry and fast CCD visible imaging.The so-produced films were characterized by composition,thickness,roughness,wetting ability,and morphology.When compared to the MoS_(2)targets,they show a slight decrease of S with respect to Mo,due to higher ablation yield,low fusion temperature and high sublimation in vacuum.The pulsed IR laser deposited Mo Sx(with 1<x<2)films are uniform,with a thickness of about 130 nm,a roughness of about 50 nm and a higher wettability than the MoS_(2)targets.Some potential applications of the pulsed IR laser-deposited Mo Sx films are also presented and discussed.
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China (No.2018YFE0309100)National Natural Science Foundation of China (No.51821005)。
文摘Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and divertor plasma transport in magnetically confined fusion research.On the J-TEXT tokamak,a multi-channel retarding field analyzer(RFA) probe has been developed to study average plasma parameters in the edge region under various poloidal divertor and island divertor configurations.The edge radial profile of the ion-to-electron temperature ratio,τ_(i/e),has been determined,which gradually decreases as the SOL ion self-collisionality,v_(SOL)*,increases.This is broadly consistent with what has been observed previously from various tokamak experiments.However,the comparison of experimental results under different configurations shows that in the poloidal divertor configuration,even under the same v_(SOL)*,τ_(i/e) in the SOL region becomes smaller as the distance from the X-point to the target plate increases.In the island divertor configuration,τ_(i/e) near the O-point is higher than that near the X-point at the same v_(SOL)*,and both are higher than those in the limiter configuration.These results suggest that the magnetic configuration plays a critical role in the energy distributions between electrons and ions at the plasma boundary.