In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based o...In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.展开更多
In the past decades,the Incoherent Scatter Radar(ISR)has been demonstrated to be one of the most powerful instruments for ionosphere monitoring.The Institute of Geology and Geophysics at the Chinese Academy of Science...In the past decades,the Incoherent Scatter Radar(ISR)has been demonstrated to be one of the most powerful instruments for ionosphere monitoring.The Institute of Geology and Geophysics at the Chinese Academy of Sciences was founded to build a state-ofthe-art phased-array ISR at Sanya(18.3°N,109.6°E),a low-latitude station on Hainan Island,named the Sanya ISR(SYISR).As a first step,a prototype radar system consisting of eight subarrays(SYISR-8)was built to reduce the technical risk of producing the entire large array.In this work,we have summarized the preliminary experimental results based on the SYISR-8.The amplitude and phase among 256 channels were first calibrated through an embedded internal monitoring network.The mean oscillation of the amplitude and phase after calibration were about 1 dB and 5°,respectively,which met the basic requirements.The beam directivity was confirmed by crossing screen of the International Space Station.The SYISR-8 was further used to detect the tropospheric wind profile and meteors.The derived winds were evaluated by comparison with independent radiosonde and balloon-based GPS measurements.The SYISR-8 was able to observe several typical meteor echoes,such as the meteor head echo,range-spread trail echo,and specular trail echo.These results confirmed the validity and reliability of the SYISR-8 system,thereby reducing the technical risk of producing the entire large array of the SYISR to some extent.展开更多
基金National Science and Technology Major Project of China(No.2016ZX04003001)Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCZDJC39700)
文摘In the laser displacement sensors measurement system,the laser beam direction is an important parameter.Particularly,the azimuth and pitch angles are the most important parameters to a laser beam.In this paper,based on monocular vision,a laser beam direction measurement method is proposed.First,place the charge coupled device(CCD)camera above the base plane,and adjust and fix the camera position so that the optical axis is nearly perpendicular to the base plane.The monocular vision localization model is established by using circular aperture calibration board.Then the laser beam generating device is placed and maintained on the base plane at fixed position.At the same time a special target block is placed on the base plane so that the laser beam can project to the special target and form a laser spot.The CCD camera placed above the base plane can acquire the laser spot and the image of the target block clearly,so the two-dimensional(2D)image coordinate of the centroid of the laser spot can be extracted by correlation algorithm.The target is moved at an equal distance along the laser beam direction,and the spots and target images of each moving under the current position are collected by the CCD camera.By using the relevant transformation formula and combining the intrinsic parameters of the target block,the2D coordinates of the gravity center of the spot are converted to the three-dimensional(3D)coordinate in the base plane.Because of the moving of the target,the3D coordinates of the gravity center of the laser spot at different positions are obtained,and these3D coordinates are synthesized into a space straight line to represent the laser beam to be measured.In the experiment,the target parameters are measured by high-precision instruments,and the calibration parameters of the camera are calibrated by a high-precision calibration board to establish the corresponding positioning model.The measurement accuracy is mainly guaranteed by the monocular vision positioning accuracy and the gravity center extraction accuracy.The experimental results show the maximum error of the angle between laser beams reaches to0.04°and the maximum error of beam pitch angle reaches to0.02°.
基金This work was supported by the National Natural Science Foundation of China(grant no.41427901)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant no.XDA17010206).We acknowledge the significant contributions of the engineering team from the Nanjing Research Institute of Electronics Technology beyond the author list.The experimental data can be obtained upon request through the corresponding authors.
文摘In the past decades,the Incoherent Scatter Radar(ISR)has been demonstrated to be one of the most powerful instruments for ionosphere monitoring.The Institute of Geology and Geophysics at the Chinese Academy of Sciences was founded to build a state-ofthe-art phased-array ISR at Sanya(18.3°N,109.6°E),a low-latitude station on Hainan Island,named the Sanya ISR(SYISR).As a first step,a prototype radar system consisting of eight subarrays(SYISR-8)was built to reduce the technical risk of producing the entire large array.In this work,we have summarized the preliminary experimental results based on the SYISR-8.The amplitude and phase among 256 channels were first calibrated through an embedded internal monitoring network.The mean oscillation of the amplitude and phase after calibration were about 1 dB and 5°,respectively,which met the basic requirements.The beam directivity was confirmed by crossing screen of the International Space Station.The SYISR-8 was further used to detect the tropospheric wind profile and meteors.The derived winds were evaluated by comparison with independent radiosonde and balloon-based GPS measurements.The SYISR-8 was able to observe several typical meteor echoes,such as the meteor head echo,range-spread trail echo,and specular trail echo.These results confirmed the validity and reliability of the SYISR-8 system,thereby reducing the technical risk of producing the entire large array of the SYISR to some extent.