A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar...The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.展开更多
This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated usin...This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement.展开更多
In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading ...In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.展开更多
A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection techn...A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be eval...Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations.展开更多
This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the...This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.展开更多
Slope bearing capacity is one of the most important characteristics in slope engineering and is strongly influenced by weak planes,loading conditions,and slope geometry.By presenting the evolution of slip surfaces,thi...Slope bearing capacity is one of the most important characteristics in slope engineering and is strongly influenced by weak planes,loading conditions,and slope geometry.By presenting the evolution of slip surfaces,this paper explored how the slope bearing capacity is affected by widely observed influencing factors.The initiation and propagation of slip surfaces are presented in laboratory model tests of slope using the transparent soil technique.Shear band evolution under various weak planes,loading conditions,and slope geometries were experimentally presented,and slope bearing capacities were analyzed with the process of shear band evolution.This paper verified that slip surface morphologies have a strong relation with the slope bearing capacity.The same slip surface morphology can have different evolutionary processes.In this case,it is the shear band evolution that determines the slope bearing capacity,not the morphology of the slip surface.The influencing factors such as pre-existing weak planes,loading conditions,and slope geometry strongly affect the slope bearing capacity as these factors govern the process of shear band evolution inside the slope.展开更多
This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although th...This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although this criterion is considered a reference value for empirical and numerical calculations,some limitations of its basic simplifications have not been clarified yet.This research compares the analytical results obtained from the novel discontinuity layout optimization(DLO)method and the numerical solutions from the finite difference method(FDM).The limitations of the analytical solution are considered by comparing different DLO failure modes,thus allowing for the first time a critical evaluation of its scope and conditioning for implementation.Errors of up to 40%in the bearing capacity and unrealistic failure modes are the main issues in the analytical solution.The main aspects of the DLO method are also analyzed with an emphasis on the linearization of the rock failure criterion and the accuracy resulting from the discretization size.The analysis demonstrates DLO as a very efficient and accurate tool to address the pile tip bearing capacity,presenting considerable advantages over other methods.展开更多
Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but ...Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements.展开更多
Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, u...Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option.展开更多
The bearing capacity testing and evaluation of the existing bridge engineering structure is not only the key to clarify its structural quality and safety performance,but it also can lay a solid foundation for subseque...The bearing capacity testing and evaluation of the existing bridge engineering structure is not only the key to clarify its structural quality and safety performance,but it also can lay a solid foundation for subsequent repairs and maintenance work.To ensure the bearing capacity,durability and reliability of existing bridges,this paper analyzes the importance and methods of testing and evaluation of structural bearing capacity of a bridge.This analysis aims to provide scientific reference for the quality assessment and subsequent repair and maintenance of existing bridge engineering structures.展开更多
This study addresses the pressing need to assess foundation bearing capacity in Opolo,Yenagoa,Bayelsa State,Nigeria.The significance lies in the dearth of comprehensive geotechnical data for construction planning in t...This study addresses the pressing need to assess foundation bearing capacity in Opolo,Yenagoa,Bayelsa State,Nigeria.The significance lies in the dearth of comprehensive geotechnical data for construction planning in the region.Past research is limited and this study contributes valuable insights by integrating Geographic Information System(GIS)with the Generalized Reciprocal Method(GRM).To collect data,near-surface seismic refraction surveys were conducted along three designated lines,utilizing ABEM Terraloc Mark 6 equipment,Easy Refract,and ArcGIS 10.4.1 software.This methodology allowed for the determination of key geotechnical parameters essential for soil characterization at potential foundation sites.The results revealed three distinct geoseismic layers.The uppermost layer,within a depth of 0.89 to 1.50 meters,exhibited inadequate compressional and shear wave velocities and low values for oedometric modulus,shear modulus,N-value,ultimate bearing capacity,and allowable bearing capacity.This indicates the presence of unsuitable,soft,and weak alluvial deposits for substantial structural loads.In contrast,the second layer(1.52 to 3.84 m depth)displayed favorable geotechnical parameters,making it suitable for various construction loads.The third layer(15.00 to 26.05 m depth)exhibited varying characteristics.The GIS analysis highlighted the unsuitability of the uppermost layer for construction,while the second and third layers were found to be fairly competent and suitable for shallow footing and foundation design.In summary,this study highlights the importance of geotechnical surveys in Opolo’s construction planning.It offers vital information for informed choices,addresses issues in the initial layer,and suggests secure,sustainable construction options.展开更多
By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor ...By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland prod...[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland productivity and the quality of grass in 7 survey sites were analyzed.[Result] The grass type in arid zone of central Ningxia had changed or was changing in the last 20 years;the dominant species within communities were also replacing by other species,vegetation coverage and number of plant species within communities were continuously declined,the bearing capacity of grassland had averagely declined by 114%,and the quality of grassland seriously declined.[Conclusion] The study provided basic data for the sustainable use of typical grassland.展开更多
Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is...Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capac...Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials.展开更多
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
文摘The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity.
文摘This study presents various approaches to calculating the bearing capacity of spread footings applied to the rock mass of the western corniche at the tip of the Dakar peninsula. The bearing capacity was estimated using empirical, analytical and numerical approaches based on the parameters of the rock mass and the foundation. Laboratory tests were carried out on basanite, as well as on the other facies detected. The results of these studies give a range of allowable bearing capacity values varying between 1.92 and 11.39 MPa for the empirical methods and from 7.13 to 25.50 MPa for the analytical methods. A wide dispersion of results was observed according to the different approaches. This dispersion of results is explained by the use of different rock parameters depending on the method used. The allowable bearing capacity results obtained with varying approaches of calculation remain admissible to support the loads. On the other hand, the foundation calculations show acceptable settlement of the order of a millimeter for all the layers, especially in the thin clay layers resting on the bedrock at shallow depths, where the rigidity of the rock reduces settlement.
文摘In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.
文摘A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(Grant No.51825904)the Research on the Form,Design Method and Weathering Resistance of Key Components of Novel Floating Support Structures for Offshore Photovoltaics(Grant No.2022YFB4200701).
文摘Due to the uneven seabed and heaving of soil during pumping,incomplete soil plugs may occur during the installation of bucket foundations,and the impacts on the bearing capacities of bucket foundations need to be evaluated.In this paper,the contact ratio(the ratio of the top diameter of the soil plug to the diameter of the bucket)and the soil plug ratio(the ratio of the soil heave height to the skirt height)are defined to describe the shape and size of the incomplete soil plug.Then,finite element models are established to investigate the bearing capacities of bucket foundations with incomplete soil plugs and the influences of the contact ratios,and the soil plug ratios on the bearing capacities are analyzed.The results show that the vertical bearing capacity of bucket foundations in homogeneous soil continuously improves with the increase of the contact ratio.However,in normally consolidated soil,the vertical bearing capacity barely changes when the contact ratio is smaller than 0.75,while the bearing capacity suddenly increases when the contact ratio increases to 1 due to the change of failure mode.The contact ratio hardly affects the horizontal bearing capacity of bucket foundations.Moreover,the moment bearing capacity improves with the increase of the contact ratio for small aspect ratios,but hardly varies with increasing contact ratio for aspect ratios larger than 0.5.Consequently,the reduction coefficient method is proposed based on this analysis to calculate the bearing capacities of bucket foundations considering the influence of incomplete soil plugs.The comparison results show that the proposed reduction coefficient method can be used to evaluate the influences of incomplete soil plug on the bearing capacities of bucket foundations.
基金This work was financially supported by the National Key Research and Development Program of China(No.2022YFC2903804)the National Natural Science Foundation of China(Nos.52004054,52274115,51874068 and 52074062).
文摘This paper aims to determine the load bearing capacity of pre-stressed expandable props with different geometries and load eccentricities for flexible support in underground mining or excavation.It is deduced that the expandable device could have much higher strength(>89 MPa)by laboratory tests,and the load bearing capacity of the expandable prop may depend on the stability of the supporting steel pipe structure.A good agreement was found between the laboratory test and numerical results in terms of the load bearing capacity and the final macro-bending failure pattern for expandable props with heights of 1.5 and 2.7 m,and the theoretical calculation for the strength of traditional steel structures is not directly suitable for the expandable props.Moreover,additional numerical simulations were performed for the expandable props with different normalized slenderness ratiosλ_(n)and loading eccentric distances e.The variation of stability coefficient of the expandable prop is in line with the Perry-Robertson equation and its correlation coefficients are fitted as a of 0.979 and b of 0.314.For estimating the load bearing capacity of the expandable props,the strength equation for traditional steel structures is improved by introducing a bending magnification factor and by modifying the normalized slenderness ratio to a converted slenderness ratio.Based on the underground field monitoring for the strength of expandable props with different heights,the empirical eccentric distances were back calculated,and a safety factor is introduced to obtain the designed strength of the expandable prop.In addition,a four-step design procedure is proposed for the expandable prop.
基金The work described in this paper is partially supported by the ARC Discovery Project(Grant Nos.DP210100437 and DP230100126)the National Natural Science Foundation of China(Grant No.41790445),for which the authors are very grateful.
文摘Slope bearing capacity is one of the most important characteristics in slope engineering and is strongly influenced by weak planes,loading conditions,and slope geometry.By presenting the evolution of slip surfaces,this paper explored how the slope bearing capacity is affected by widely observed influencing factors.The initiation and propagation of slip surfaces are presented in laboratory model tests of slope using the transparent soil technique.Shear band evolution under various weak planes,loading conditions,and slope geometries were experimentally presented,and slope bearing capacities were analyzed with the process of shear band evolution.This paper verified that slip surface morphologies have a strong relation with the slope bearing capacity.The same slip surface morphology can have different evolutionary processes.In this case,it is the shear band evolution that determines the slope bearing capacity,not the morphology of the slip surface.The influencing factors such as pre-existing weak planes,loading conditions,and slope geometry strongly affect the slope bearing capacity as these factors govern the process of shear band evolution inside the slope.
文摘This paper investigates the validity and shortcomings of the existing analytical solution for the ultimate bearing capacity of a pile embedded in a rock mass using the modified HoekeBrown failure criterion.Although this criterion is considered a reference value for empirical and numerical calculations,some limitations of its basic simplifications have not been clarified yet.This research compares the analytical results obtained from the novel discontinuity layout optimization(DLO)method and the numerical solutions from the finite difference method(FDM).The limitations of the analytical solution are considered by comparing different DLO failure modes,thus allowing for the first time a critical evaluation of its scope and conditioning for implementation.Errors of up to 40%in the bearing capacity and unrealistic failure modes are the main issues in the analytical solution.The main aspects of the DLO method are also analyzed with an emphasis on the linearization of the rock failure criterion and the accuracy resulting from the discretization size.The analysis demonstrates DLO as a very efficient and accurate tool to address the pile tip bearing capacity,presenting considerable advantages over other methods.
基金supported by Korea Research Fellowship Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Grant No.2019H1D3A1A01102993)the Inha University Research Grant(2022).
文摘Ultimate bearing capacity(UBC)is a key subject in geotechnical/foundation engineering as it determines the limit of loads imposed on the foundation.The most reliable means of determining UBC is through experiment,but it is costly and time-consuming which has led to the development of various models based on the simplified assumptions.The outcomes of the models are usually validated with the experimental results,but a large gap usually exists between them.Therefore,a model that can give a close prediction of the experimental results is imperative.This study proposes a grasshopper optimization algorithm(GOA)and salp swarm algorithm(SSA)to optimize artificial neural networks(ANNs)using the existing UBC experimental database.The performances of the proposed models are evaluated using various statistical indices.The obtained results are compared with the existing models.The proposed models outperformed the existing models.The proposed hybrid GOA-ANN and SSA-ANN models are then transformed into mathematical forms that can be incorporated into geotechnical/foundation engineering design codes for accurate UBC measurements.
文摘Artificial cementation is a method commonly used to enhance and improve soil properties. This paper investigates the effect of using different amounts of cement on soil strength parameters and soil bearing capacity, using the finite element method. Experimental tests are conducted on soil samples with different amounts of Portland cement. A 2-D numerical model is created and validated using the numerical modelling software, COMSOL Multiphysics 5.6 software. The study finds that the cohesion, and the angle of the internal friction of the soil samples increase significantly as a result of adding 1%, 2%, and 4% of Portland cement. The results demonstrate that the stresses and strain under the strip footing proposed decrease by 3.24% and 7.42%. Moreover, the maximum displacement also decreases by 1.47% and 2.97%, as a result of adding cements of 2% and 4%. The bearing capacity values obtained are therefore excellent, especially when using the 2% and 4% cement. The increase identified is due to the increased values of the bearing capacity factors. It is concluded that from an economic viewpoint, using 2% cement is the best option.
文摘The bearing capacity testing and evaluation of the existing bridge engineering structure is not only the key to clarify its structural quality and safety performance,but it also can lay a solid foundation for subsequent repairs and maintenance work.To ensure the bearing capacity,durability and reliability of existing bridges,this paper analyzes the importance and methods of testing and evaluation of structural bearing capacity of a bridge.This analysis aims to provide scientific reference for the quality assessment and subsequent repair and maintenance of existing bridge engineering structures.
文摘This study addresses the pressing need to assess foundation bearing capacity in Opolo,Yenagoa,Bayelsa State,Nigeria.The significance lies in the dearth of comprehensive geotechnical data for construction planning in the region.Past research is limited and this study contributes valuable insights by integrating Geographic Information System(GIS)with the Generalized Reciprocal Method(GRM).To collect data,near-surface seismic refraction surveys were conducted along three designated lines,utilizing ABEM Terraloc Mark 6 equipment,Easy Refract,and ArcGIS 10.4.1 software.This methodology allowed for the determination of key geotechnical parameters essential for soil characterization at potential foundation sites.The results revealed three distinct geoseismic layers.The uppermost layer,within a depth of 0.89 to 1.50 meters,exhibited inadequate compressional and shear wave velocities and low values for oedometric modulus,shear modulus,N-value,ultimate bearing capacity,and allowable bearing capacity.This indicates the presence of unsuitable,soft,and weak alluvial deposits for substantial structural loads.In contrast,the second layer(1.52 to 3.84 m depth)displayed favorable geotechnical parameters,making it suitable for various construction loads.The third layer(15.00 to 26.05 m depth)exhibited varying characteristics.The GIS analysis highlighted the unsuitability of the uppermost layer for construction,while the second and third layers were found to be fairly competent and suitable for shallow footing and foundation design.In summary,this study highlights the importance of geotechnical surveys in Opolo’s construction planning.It offers vital information for informed choices,addresses issues in the initial layer,and suggests secure,sustainable construction options.
基金Supported by the Jiangshu Province Communication Scientific Research Project(06Y21)Zhejiang Province Road Scientific Research Project(2007-013-11L)~~
文摘By analyzing the existing methods for the bridge bearing capacity assessment, an analytic hierarchy pro cess estimation model with a variable weight and fuzzy description is proposed based on the nondestructive infor mation. Considering the actual strength, the bearing capacity is first calculated from its design state, and then modified based on the detection information. The modification includes the section reduction and the structure deterioration. The section reduction involves the concrete section and the steel cross-section reduction. The structure deterioration is decided by six factors, i.e. , the concrete surface damage, the actual concrete strength, the steel corrosion electric potential, the chloride ion content, the carbonization depth, and the protective layer depth. The initial weight of each factor is calculated by the expert judgment matrix using an analytic hierarchy process. The consistency approximation and the error transfer theory are used. Then, the variable weight is in- troduced to expand the influences of factors in the worse state. Finally, an actual bridge is taken as an example to verify the proposed method. Results show that the estimated capacity agrees well with that of the load test, thus the method is objective and credible
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金Supported by Key Scientific and Technological Projects in Ningxia Hui Autonomous Region"Research and Demonstration of Sustain-able Utilization Technology in Arid and Semiarid Grassland in Ningxia Hui Autonomous Region"~~
文摘[Objective] The paper was to explore the vegetation regressive succession law in arid zone of central Ningxia.[Method] Based on the survey data during 1982-2001,the grass type vegetation characteristics,grassland productivity and the quality of grass in 7 survey sites were analyzed.[Result] The grass type in arid zone of central Ningxia had changed or was changing in the last 20 years;the dominant species within communities were also replacing by other species,vegetation coverage and number of plant species within communities were continuously declined,the bearing capacity of grassland had averagely declined by 114%,and the quality of grassland seriously declined.[Conclusion] The study provided basic data for the sustainable use of typical grassland.
基金The National Natural Science Foundation of China(No50178026)Program for New Century Excellent Talents in University+1 种基金the Key Technologies R & D Program of Heilongjiang Province(NoGC04A609)the Key Technologies R & D Program of Harbin City(No2004AA9CS187)
文摘Cave-in failure is apt to occur in joints of trusses made of square hollow sections. In order to turn the failure mode into a strength failure mode of joint members, the idea is proposed that the chord of the truss is grouted to increase the cave-in beating capacity of a hollow tube chord. An experiment of eight specimens of N- joints made of grout-filled square steel tubes is performed. Based on the experimental study, the geometrical parameters of specimens are analyzed, and the effects of the confinement index ε, the spacing between the two web members g and the ratio of side length of the vertical web member to that of the chord β on the behavior of specimens are investigated through simulation analysis by simulation analyses, the mechanical properties and the failure an ANSYS program. Based on the test results and modes of this kind of joints are analyzed and the formulae to predict the ultimate bearing capacities corresponding to different failure modes are developed. The ultimate bearing capacity of compressive N-joints is calculated in accordance with the cave-in failure mode of a chord member; the ultimate bearing capacity of tension N-joints is calculated in accordance with the punchingshear failure mode; the ultimate bearing capacity of a chord member is calculated in accordance with the shear failure mode in normal sections.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
文摘Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials.