期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Characterization of P-nitrophenol Adsorption Kinetic Properties in Batch and Fixed Bed Adsorbers
1
作者 邵琰 ZHANG Huiping 鄢瑛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1152-1160,共9页
P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe th... P-nitrophenol(PNP) adsorption in batch and fixed bed adsorbers was studied. The homogeneous surface diffusion model(HSDM) based on external mass transfer and intraparticle surface diffusion was used to describe the adsorption kinetics for PNP in stirred batch adsorber at various initial concentrations and activated carbon dosages. The fixed bed model considering both external and internal mass transfer resistances as well as axial dispersion with non-linear isotherm was utilized to predict the fixed bed breakthrough curves for PNP adsorption under the conditions of different flow rates and inlet concentrations. The equilibrium parameters and surface diffusivity(Ds) were obtained from separate experiments in batch adsorber. The obtained value of Ds is 4.187×1012 m2/s. The external film mass transfer coefficient(kf) and axial dispersion coefficient(DL) were estimated by the correlations of Goeuret and Wike-Chang. The Biot number determined by HSDM indicated that the adsorption rate of PNP onto activated carbon in stirred batch was controlled by intraparticle diffusion and film mass transfer. A sensitivity analysis was carried out and showed that the fixed bed model calculations were sensitive to Ds and kf, but insensitive to DL. The sensitivity analysis and Biot number both confirm that intraparticle diffusion and film mass transfer are the controlling mass transfer mechanism in fixed bed adsorption system. 展开更多
关键词 adsorption activated carbon modeling fixed bed adsorber simulation
下载PDF
Numerical simulation of pollution process due to resuspension of bed materials adsorbing pollutants in alluvial rivers 被引量:2
2
作者 DING Yun XIAO Yang ZHONG DeYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第7期1280-1288,共9页
Resuspension of bed materials absorbing pollutants potentially poses unpredictable challenges to water management in alluvial rivers and its mechanism of transport has not been widely recognized.In this study,a transp... Resuspension of bed materials absorbing pollutants potentially poses unpredictable challenges to water management in alluvial rivers and its mechanism of transport has not been widely recognized.In this study,a transport equation that defines the movement of pollutants adsorbed on the bed materials in the active bed layer is established,on the basis of mass conservation law and continuum theory.The transport equation is coupled into the 1-D mathematical model to numerically investigate water pollution process due to the scour of the bed sediment adsorbing pollutants.Comparisons with the situation in which the dynamics of the active bed layer is not considered indicate that the periodical evolution of the bed layer plays an innegligible role in the pollution process due to sediment re-suspension.Furthermore,comparisons of the results with available experimental observations are presented,and fairly good agreement is obtained. 展开更多
关键词 RESUSPENSION POLLUTANTS alluvial rivers active bed layer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部