In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt...In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.展开更多
The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p...The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.展开更多
In this paper,the ballistic impact experiments,including impact test chamber and impact double-spaced plates,were conducted to study the reaction behaviors of a novel functionally graded reactive material(FGRM),which ...In this paper,the ballistic impact experiments,including impact test chamber and impact double-spaced plates,were conducted to study the reaction behaviors of a novel functionally graded reactive material(FGRM),which was composed of polytetrafluoroethylene/aluminum(PTFE/Al)and PTFE/Al/bismuth trioxide(Bi_(2)O_(3)).The experiments showed that the impact direction of the FGRM had a significant effect on the reaction.With the same impact velocity,when the first impact material was PTFE/Al/Bi_(2)O_(3),compared with first impact material PTFE/Al,the FGRM induced higher overpressure in the test chamber and larger damaged area of double-spaced plates.The theoretical model,which considered the shock wave generation and propagation,the effect of the shock wave on reaction efficiency,and penetration behaviors,was developed to analyze the reaction behaviors of the FGRM.The model predicted first impact material of the FGRM with a higher shock impedance was conducive to the reaction of reactive materials.The conclusion of this study provides significant information about the design and application of reactive materials.展开更多
To understand the mechanism of the interfacial reaction between high-Mn and high-Al steel and MgO refractory,a series of laboratory experiments as well as thermodynamic calculations were performed.The effects of Mn an...To understand the mechanism of the interfacial reaction between high-Mn and high-Al steel and MgO refractory,a series of laboratory experiments as well as thermodynamic calculations were performed.The effects of Mn and Al contents in the steel and the reaction time on the interfacial reaction were investigated.It was observed that the erosion of the MgO refractory is caused by the reaction of Al and Mn in the steel with MgO in the refractory,which would lead to the formation of(Mn,Mg)O·Al_(2)O_(3) spinel and(Mn,Mg)O solid solution.The formation mechanism of the spinel and solid solution is as follows.The Al in the steel firstly reacts with MgO in the refractory to generate MgO·Al_(2)O_(3) spinel,and then,the spinel reacts with Mn in the steel to form(Mn,Mg)O·Al_(2)O_(3) spinel.Finally,the MnO in the spinel reacts with the MgO in the inner refractory to form(Mn,Mg)O solid solution.In addition,only(Mn,Mg)O·Al_(2)O_(3) spinel is present in the interfacial reaction layer of the refractory when the Al content in the steel is sufficient.展开更多
Owing to diamond excellent physical and chemical properties,so synthetic diamond abrasives are extensively used in manufacturing diamond tools are utilized in machining hard and brittle materials.The brazing technolog...Owing to diamond excellent physical and chemical properties,so synthetic diamond abrasives are extensively used in manufacturing diamond tools are utilized in machining hard and brittle materials.The brazing technology is exploited with strong bonding force between the diamond and substrate,which can realize metallurgical and chemical bonding between the filler metals and diamond abrasives.In this paper,the research reports on nickel-based fillers for brazing diamond grains at home and abroad in recent years are reviewed systematically,with emphasis on the influence of alloying elements and active elements on the properties of nickel-based fillers.The advantages and disadvantages of Cr,B,Si,P,Mn,Fe,Cu,W,C in nickel-based fillers and the negative effects of impurity elements were summarized.The shortcomings in the research and application of nickel-based fillers were pointed out,which provided theoretical guidance for further systematic research and development of related technologies.展开更多
The microstructure, tensile property and wear resistance of 7075 aluminum matrix composite reinforced with TiC particles prepared by in-situ reaction casting were investigated. The effect of TiC reinforcement on wear ...The microstructure, tensile property and wear resistance of 7075 aluminum matrix composite reinforced with TiC particles prepared by in-situ reaction casting were investigated. The effect of TiC reinforcement on wear behavior was analyzed. The wear mechanism was also discussed. A micro-mechanism model of reaction kinetics for synthesis of TiC was acquired. Results show that TiC could increase the tensile and yield strength, but decrease the elongation. Besides, TiC particles improve the property of wear resistance of 7075 aluminum alloy. The wear mechanisms include abrasive wear and adhesive wear in wear test process.展开更多
Reaction behaviors occurring in Ti/Al foil metallurgy were systematically investigated.Particular emphasis was focused on the reaction between solid Al and Ti as well as subsequent reaction between TiAland Ti layer.In...Reaction behaviors occurring in Ti/Al foil metallurgy were systematically investigated.Particular emphasis was focused on the reaction between solid Al and Ti as well as subsequent reaction between TiAland Ti layer.In the solid reaction between Al and Ti,the presence of residual Al is mainly caused by inhomogeneous growth of TiAllayer and micro-voids existing at the interface.However,through reaction between molten Al and Ti,TiAl/Ti multilayer can be achieved with complete consumption of Al.During subsequent high-temperature heat treatment,TiAl/Ti multilayer will eventually turn into TiAl/TiAl multilayer accompanying with simultaneous formation and successive disappearance of intermediate phases,such as TiAland TiAl.Moreover,it is found that the growth direction of TiAl layer changes as a function of annealing time between different couples in multi-intermetallics system.展开更多
In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applie...In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applied to investigate the rare earth minerals in Bayan Obo.The occurrence state and regularity of rare earth elements were analyzed under different reduction time. The results reveal that rare earth elements in rare earth minerals exist in RE(CO3)F(bastnaesite) and REPO4(monazite). In this research, at 1,498 K with a C/O molar ratio(i.e., molar ratio of fixed carbon in the coal to reducible oxygen in the ore) of2.5, rare earth minerals primarily decompose into RE2O3at5 min. When the time is extended to 10 min, solid-phase reactions occur among RE2O3, CaO, and SiO2, and the resultant is cerium wollastonite(CaO·2RE2O3·3SiO2). At reaction time 〉20 min, rare earth elements mainly exist in cerium wollastonite(CaO·2RE2O3·3SiO2), and the grain size varies in the range of 10–30 μm. The results show that coal-based reduction is efficient to recover rare earth minerals in reduced materials.展开更多
0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.With...0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.展开更多
IN the process of forecasts, analyses and numerical treatments of the ground water resource, we often meet with various chemical reaction models. One type of them is three kinds of chemical substance M<sub>1<...IN the process of forecasts, analyses and numerical treatments of the ground water resource, we often meet with various chemical reaction models. One type of them is three kinds of chemical substance M<sub>1</sub>, M<sub>2</sub> and M<sub>3</sub> which can react with each other to produce two new kinds of other chemical compounds: (M<sub>2</sub>)<sub>n</sub> (M<sub>1</sub>)<sub>m</sub> and (M<sub>3</sub>)<sub>r</sub> (M<sub>1</sub>)<sub>κ</sub> at the same time. Usually, these reactions are irreversible and they have the following forms:展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51874071 and 52022019)。
文摘In order to develop limonite and decrease CO_(2) emissions,siderite is proposed as a clean reductant for suspension magnetization roasting(SMR) of limonite.An iron concentrate(iron grade:65.92wt%,iron recovery:98.54wt%) was obtained by magnetic separation under the optimum SMR conditions:siderite dosage 40wt%,roasting temperature 700℃,roasting time 10 min.According to the magnetic analysis,SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals,thus enabling the recovery of iron via magnetic separation.Based on the phase transformation analysis,during the SMR process,limonite was first dehydrated and converted to hematite,and then siderite decomposed to generate magnetite and CO,where CO reduced the freshly formed hematite to magnetite.The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure,making them easier to be ground.The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism,suggesting that the diffusion of CO controlled the reaction.These results encourage the application of siderite as a reductant in SMR.
基金supported by the National Natural Science Foundation of China(Nos.52174277 and 51874077)the Fundamental Funds for the Central Universities,China(No.N2225032)+1 种基金the China Postdoctoral Science Foundation(No.2022M720683)the Postdoctoral Fund of Northeastern University,China。
文摘The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.
基金National Natural Science Foundation of China[grant number U1730112],China.
文摘In this paper,the ballistic impact experiments,including impact test chamber and impact double-spaced plates,were conducted to study the reaction behaviors of a novel functionally graded reactive material(FGRM),which was composed of polytetrafluoroethylene/aluminum(PTFE/Al)and PTFE/Al/bismuth trioxide(Bi_(2)O_(3)).The experiments showed that the impact direction of the FGRM had a significant effect on the reaction.With the same impact velocity,when the first impact material was PTFE/Al/Bi_(2)O_(3),compared with first impact material PTFE/Al,the FGRM induced higher overpressure in the test chamber and larger damaged area of double-spaced plates.The theoretical model,which considered the shock wave generation and propagation,the effect of the shock wave on reaction efficiency,and penetration behaviors,was developed to analyze the reaction behaviors of the FGRM.The model predicted first impact material of the FGRM with a higher shock impedance was conducive to the reaction of reactive materials.The conclusion of this study provides significant information about the design and application of reactive materials.
基金the support of the National Natural Science Foundation of China(Grant Nos.52274337 and 52174317)。
文摘To understand the mechanism of the interfacial reaction between high-Mn and high-Al steel and MgO refractory,a series of laboratory experiments as well as thermodynamic calculations were performed.The effects of Mn and Al contents in the steel and the reaction time on the interfacial reaction were investigated.It was observed that the erosion of the MgO refractory is caused by the reaction of Al and Mn in the steel with MgO in the refractory,which would lead to the formation of(Mn,Mg)O·Al_(2)O_(3) spinel and(Mn,Mg)O solid solution.The formation mechanism of the spinel and solid solution is as follows.The Al in the steel firstly reacts with MgO in the refractory to generate MgO·Al_(2)O_(3) spinel,and then,the spinel reacts with Mn in the steel to form(Mn,Mg)O·Al_(2)O_(3) spinel.Finally,the MnO in the spinel reacts with the MgO in the inner refractory to form(Mn,Mg)O solid solution.In addition,only(Mn,Mg)O·Al_(2)O_(3) spinel is present in the interfacial reaction layer of the refractory when the Al content in the steel is sufficient.
基金supported by the Natural Science Foundation of Anhui Provincial Natural Science Foundation(No.2008085QE231)。
文摘Owing to diamond excellent physical and chemical properties,so synthetic diamond abrasives are extensively used in manufacturing diamond tools are utilized in machining hard and brittle materials.The brazing technology is exploited with strong bonding force between the diamond and substrate,which can realize metallurgical and chemical bonding between the filler metals and diamond abrasives.In this paper,the research reports on nickel-based fillers for brazing diamond grains at home and abroad in recent years are reviewed systematically,with emphasis on the influence of alloying elements and active elements on the properties of nickel-based fillers.The advantages and disadvantages of Cr,B,Si,P,Mn,Fe,Cu,W,C in nickel-based fillers and the negative effects of impurity elements were summarized.The shortcomings in the research and application of nickel-based fillers were pointed out,which provided theoretical guidance for further systematic research and development of related technologies.
基金Supported by the Fundamental Research Funds for the Central Universities(No.2017XKQY007)
文摘The microstructure, tensile property and wear resistance of 7075 aluminum matrix composite reinforced with TiC particles prepared by in-situ reaction casting were investigated. The effect of TiC reinforcement on wear behavior was analyzed. The wear mechanism was also discussed. A micro-mechanism model of reaction kinetics for synthesis of TiC was acquired. Results show that TiC could increase the tensile and yield strength, but decrease the elongation. Besides, TiC particles improve the property of wear resistance of 7075 aluminum alloy. The wear mechanisms include abrasive wear and adhesive wear in wear test process.
基金financially supported by the National Basic Research Program of China(No.2011CB605501)the National Natural Science Foundation of China(Nos.U1204508 and 51171015)the Project of State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing(No.2012Z-11)
文摘Reaction behaviors occurring in Ti/Al foil metallurgy were systematically investigated.Particular emphasis was focused on the reaction between solid Al and Ti as well as subsequent reaction between TiAland Ti layer.In the solid reaction between Al and Ti,the presence of residual Al is mainly caused by inhomogeneous growth of TiAllayer and micro-voids existing at the interface.However,through reaction between molten Al and Ti,TiAl/Ti multilayer can be achieved with complete consumption of Al.During subsequent high-temperature heat treatment,TiAl/Ti multilayer will eventually turn into TiAl/TiAl multilayer accompanying with simultaneous formation and successive disappearance of intermediate phases,such as TiAland TiAl.Moreover,it is found that the growth direction of TiAl layer changes as a function of annealing time between different couples in multi-intermetallics system.
基金financially supported by the National Natural Science Foundation of China (Nos. 51204033 and 51134002)
文摘In order to ascertain the reaction behavior of rare earth minerals in coal-based reduction, X-ray diffraction(XRD), scanning electron microscopy(SEM), and energy dispersive spectroscopy(EDS) analyses were applied to investigate the rare earth minerals in Bayan Obo.The occurrence state and regularity of rare earth elements were analyzed under different reduction time. The results reveal that rare earth elements in rare earth minerals exist in RE(CO3)F(bastnaesite) and REPO4(monazite). In this research, at 1,498 K with a C/O molar ratio(i.e., molar ratio of fixed carbon in the coal to reducible oxygen in the ore) of2.5, rare earth minerals primarily decompose into RE2O3at5 min. When the time is extended to 10 min, solid-phase reactions occur among RE2O3, CaO, and SiO2, and the resultant is cerium wollastonite(CaO·2RE2O3·3SiO2). At reaction time 〉20 min, rare earth elements mainly exist in cerium wollastonite(CaO·2RE2O3·3SiO2), and the grain size varies in the range of 10–30 μm. The results show that coal-based reduction is efficient to recover rare earth minerals in reduced materials.
基金Project supported by Anhui Provincial Natural Science Foundation(1608085ME92)
文摘0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.
文摘IN the process of forecasts, analyses and numerical treatments of the ground water resource, we often meet with various chemical reaction models. One type of them is three kinds of chemical substance M<sub>1</sub>, M<sub>2</sub> and M<sub>3</sub> which can react with each other to produce two new kinds of other chemical compounds: (M<sub>2</sub>)<sub>n</sub> (M<sub>1</sub>)<sub>m</sub> and (M<sub>3</sub>)<sub>r</sub> (M<sub>1</sub>)<sub>κ</sub> at the same time. Usually, these reactions are irreversible and they have the following forms: