Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a s...Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.展开更多
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消...为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。展开更多
BeiDou navigation satellite system(the BeiDou system) is the only PNT(Positioning, Navigation and Tim-ing) resource in China that has coverage of the globe and near-Earth space and provides continuous high-precision,l...BeiDou navigation satellite system(the BeiDou system) is the only PNT(Positioning, Navigation and Tim-ing) resource in China that has coverage of the globe and near-Earth space and provides continuous high-precision,low-cost positioning, navigation and timing solutions for users in a unified spatio-temporal benchmark. As an importantspatio-temporal benchmark transmission system, the BeiDou system is the most important resource for the nationalPNT system to provide a PNT capability under a unified spatial-temporal benchmark. This paper proposes the con-cept, composition and development model of the space-based PNT system design based on the BeiDou system withall its space characteristics, as well as the advantages of the system. It opens up a new direction for the construction ofChina's PNT system and expands a new horizon in the research of a PNT system in China.展开更多
As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Re...As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Regional Navigation Satellite System that starts to officially provide services for most parts of the Asia-Pacific region from December 27. The 16th BeiDou navigation satellite, the last one for the regional BeiDou system, was developed by China Academy of Space Technology under CASC.展开更多
The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the tra...The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the transportation industry improves the development level of intelligent,safe,green and shared transportation.Based on the introduction of the application requirements and characteristics of BDS in the transportation industry,this paper systematically introduces the overall status of BDS in the transportation industry,covering highways,waterways,railways,civil aviation,and the postal service.Finally,the paper forecasts future applications of BDS in the field of transportation.It identifies within the transportation industry rich application scenarios for the cultivation of advanced technologies represented by BDS,enhancing transportation safety services and guaranteeing emergency communication,while improving the operation efficiency and management level of an integrated transportation system.展开更多
China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on Febr...China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the展开更多
LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSL...LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.展开更多
At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System sat...At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was展开更多
为比较分析城市道路观测环境下BDS-3/GPS组合RTK测量性能,探讨一种基于卡尔曼滤波算法的RTK测量模型。在统一BDS-3/GPS组合RTK测量时空基准的基础上,建立RTK观测方程模型,利用LAMBDA算法快速确定双差整周模糊度,并基于卡尔曼滤波算法求...为比较分析城市道路观测环境下BDS-3/GPS组合RTK测量性能,探讨一种基于卡尔曼滤波算法的RTK测量模型。在统一BDS-3/GPS组合RTK测量时空基准的基础上,建立RTK观测方程模型,利用LAMBDA算法快速确定双差整周模糊度,并基于卡尔曼滤波算法求解RTK观测方程模型测量结果;基于Visual Studio 2020平台,运用C/C++编程语言,设计和开发RTK数据处理软件(KalRTK),并比较分析BDS-3/GPS组合RTK测量结果。通过城市道路实测数据分析结果表明,BDS-3系统沿东西向跟踪卫星能力要略弱于GPS系统;BDS-3/GPS组合RTK测量的平面精度与高程精度均优于1.6cm,点位精度优于2.2cm,与GPS双频RTK测量精度基本相当,但优于BDS-3双频RTK测量精度。展开更多
This paper investigates the kernel entropy based extended Kalman filter(EKF)as the navigation processor for the Global Navigation Satellite Systems(GNSS),such as the Global Positioning System(GPS).The algorithm is eff...This paper investigates the kernel entropy based extended Kalman filter(EKF)as the navigation processor for the Global Navigation Satellite Systems(GNSS),such as the Global Positioning System(GPS).The algorithm is effective for dealing with non-Gaussian errors or heavy-tailed(or impulsive)interference errors,such as the multipath.The kernel minimum error entropy(MEE)and maximum correntropy criterion(MCC)based filtering for satellite navigation system is involved for dealing with non-Gaussian errors or heavy-tailed interference errors or outliers of the GPS.The standard EKF method is derived based on minimization of mean square error(MSE)and is optimal only under Gaussian assumption in case the system models are precisely established.The GPS navigation algorithm based on kernel entropy related principles,including the MEE criterion and the MCC will be performed,which is utilized not only for the time-varying adaptation but the outlier type of interference errors.The kernel entropy based design is a new approach using information from higher-order signal statistics.In information theoretic learning(ITL),the entropy principle based measure uses information from higher-order signal statistics and captures more statistical information as compared to MSE.To improve the performance under non-Gaussian environments,the proposed filter which adopts the MEE/MCC as the optimization criterion instead of using the minimum mean square error(MMSE)is utilized for mitigation of the heavy-tailed type of multipath errors.Performance assessment will be carried out to show the effectiveness of the proposed approach for positioning improvement in GPS navigation processing.展开更多
基金supported in part by the National Key R&D Program of China(No.2022YFB3904503)National Natural Science Foundation of China(No.62172418)the joint funds of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U2133203).
文摘Due to the lack of authentication mechanism in BeiDou navigation satellite system(BDS),BD-Ⅱ civil navigation message(BDⅡ-CNAV) are vulnerable to spoofing attack and replay attack.To solve this problem,we present a security authentication protocol,called as BDSec,which is designed by using China’s cryptography Shangyong Mima(SM) series algorithms,such as SM2/4/9 and Zu Chongzhi(ZUC)algorithm.In BDSec protocol,both of BDⅡ-CNAV and signature information are encrypted using the SM4 algorithm(Symmetric encryption mechanism).The encrypted result is used as the subject authentication information.BDSec protocol applies SM9 algorithm(Identity-based cryptography mechanism) to protect the integrity of the BDⅡ-CNAV,adopts the SM2 algorithm(Public key cryptosystem) to guarantee the confidentiality of the important session information,and uses the ZUC algorithm(Encryption and integrity algorithm) to verify the integrity of the message authentication serial number and initial information and the information in authentication initialization sub-protocol respectively.The results of the SVO logic reasoning and performance analysis show that BDSec protocol meets security requirements for the dual user identity authentication in BDS and can realize the security authentication of BDⅡ-CNAV.
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
文摘为了分析当前GPS(Global Positioning System)、Galileo(Galileo Navigation Satellite System)和BDS-3(Beidou Navigation Satellite System with Global Coverage)广播星历的精度,详细分析研究了各种偏差改正及消除方法,并尽可能地消除了系统误差和粗差对评估结果的影响。选取2021-11-01/12-31共61天MGEX(multi-GNSS experiment)发布的多系统混合广播星历与武汉大学分析中心发布的事后精密星历数据进行实验,对GPS、Galileo和BDS-3近期广播星历精度进行对比分析,实验结果表明:3个系统广播星历整体精度由高到低依次是Galileo、BDS-3和GPS,其空间信号测距误差的RMS(root mean square)分别优于0.17、0.25和0.37 m,整体轨道精度的RMS分别优于0.17、0.12和0.25 m,BDS-3广播星历的轨道精度最高,钟差误差的RMS分别优于0.15、0.23和0.27 m,Galileo广播星历的钟差精度最高。对于GPS卫星的广播星历,blockⅢA卫星钟差和轨道精度均优于其他GPS类型卫星。
文摘BeiDou navigation satellite system(the BeiDou system) is the only PNT(Positioning, Navigation and Tim-ing) resource in China that has coverage of the globe and near-Earth space and provides continuous high-precision,low-cost positioning, navigation and timing solutions for users in a unified spatio-temporal benchmark. As an importantspatio-temporal benchmark transmission system, the BeiDou system is the most important resource for the nationalPNT system to provide a PNT capability under a unified spatial-temporal benchmark. This paper proposes the con-cept, composition and development model of the space-based PNT system design based on the BeiDou system withall its space characteristics, as well as the advantages of the system. It opens up a new direction for the construction ofChina's PNT system and expands a new horizon in the research of a PNT system in China.
文摘As the 16th BeiDou navigation satellite was successfully launched into space at 23:33 Beijing Time from the Xichang Satellite Launch Center (XSLC) on October 25, 2012, China completed the construction of the BeiDou Regional Navigation Satellite System that starts to officially provide services for most parts of the Asia-Pacific region from December 27. The 16th BeiDou navigation satellite, the last one for the regional BeiDou system, was developed by China Academy of Space Technology under CASC.
文摘The transportation industry is one of the largest users of the BeiDou Navigation Satellite System(BDS),characterized by multiple locations,long lines,wide range,and extensive mobility.The application of BDS in the transportation industry improves the development level of intelligent,safe,green and shared transportation.Based on the introduction of the application requirements and characteristics of BDS in the transportation industry,this paper systematically introduces the overall status of BDS in the transportation industry,covering highways,waterways,railways,civil aviation,and the postal service.Finally,the paper forecasts future applications of BDS in the field of transportation.It identifies within the transportation industry rich application scenarios for the cultivation of advanced technologies represented by BDS,enhancing transportation safety services and guaranteeing emergency communication,while improving the operation efficiency and management level of an integrated transportation system.
文摘China launched the 11th BeiDou navigation satellite in their BeiDou Navigation Satellite System.The satellite was launched from the Xichang Satellite Launch Center in Sichuan Province on a LM-3C rocket at 0:12 on February 25 (Beijing time) and was put into the predetermined transfer orbit successfully.The geostationary satellite is the first BeiDou navigation satellite launched in 2012 for the
文摘LM launch vehicles established a new record by successfully performing the 16th successful flight this year.A LM-3A launched the 10th BeiDou 2 satellite into its predetermined transfer orbit on December 2 from the XSLC in Sichuan Province.
文摘At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was
文摘为比较分析城市道路观测环境下BDS-3/GPS组合RTK测量性能,探讨一种基于卡尔曼滤波算法的RTK测量模型。在统一BDS-3/GPS组合RTK测量时空基准的基础上,建立RTK观测方程模型,利用LAMBDA算法快速确定双差整周模糊度,并基于卡尔曼滤波算法求解RTK观测方程模型测量结果;基于Visual Studio 2020平台,运用C/C++编程语言,设计和开发RTK数据处理软件(KalRTK),并比较分析BDS-3/GPS组合RTK测量结果。通过城市道路实测数据分析结果表明,BDS-3系统沿东西向跟踪卫星能力要略弱于GPS系统;BDS-3/GPS组合RTK测量的平面精度与高程精度均优于1.6cm,点位精度优于2.2cm,与GPS双频RTK测量精度基本相当,但优于BDS-3双频RTK测量精度。
基金supported by the Ministry of Science and Technology,Taiwan(Grant Number MOST 108-2221-E-019-013).
文摘This paper investigates the kernel entropy based extended Kalman filter(EKF)as the navigation processor for the Global Navigation Satellite Systems(GNSS),such as the Global Positioning System(GPS).The algorithm is effective for dealing with non-Gaussian errors or heavy-tailed(or impulsive)interference errors,such as the multipath.The kernel minimum error entropy(MEE)and maximum correntropy criterion(MCC)based filtering for satellite navigation system is involved for dealing with non-Gaussian errors or heavy-tailed interference errors or outliers of the GPS.The standard EKF method is derived based on minimization of mean square error(MSE)and is optimal only under Gaussian assumption in case the system models are precisely established.The GPS navigation algorithm based on kernel entropy related principles,including the MEE criterion and the MCC will be performed,which is utilized not only for the time-varying adaptation but the outlier type of interference errors.The kernel entropy based design is a new approach using information from higher-order signal statistics.In information theoretic learning(ITL),the entropy principle based measure uses information from higher-order signal statistics and captures more statistical information as compared to MSE.To improve the performance under non-Gaussian environments,the proposed filter which adopts the MEE/MCC as the optimization criterion instead of using the minimum mean square error(MMSE)is utilized for mitigation of the heavy-tailed type of multipath errors.Performance assessment will be carried out to show the effectiveness of the proposed approach for positioning improvement in GPS navigation processing.