Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluct...Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.展开更多
Northward infl ow through the East Taiwan Channel is vital in modulation of water exchange processes off northeastern Taiwan,China.In addition to the eff ects of the Kuroshio Current and westward-propagating oceanic m...Northward infl ow through the East Taiwan Channel is vital in modulation of water exchange processes off northeastern Taiwan,China.In addition to the eff ects of the Kuroshio Current and westward-propagating oceanic mesoscale eddies,the seas off eastern Taiwan,China,are frequently infl uenced by typhoons.Focusing on extrema of East Taiwan Channel volume transport(ETCVT)that appear within days of typhoon infl uence,this study investigated 124 historical cyclones including 91 typhoons that passed over the study sea area off eastern Taiwan,China.Based on 25-year HYbrid Coordinate Ocean Model(HYCOM)data,71%of short-term(within 10 d)ETCVT absolute values with>5 Sv occurred under the infl uence of typhoons crossing the study sea area,and the maximum short-term ETCVT extrema induced by typhoons were 12.5 and-10.9 Sv.The ETCVT extrema induced by typhoons showed reasonable positive correlation with typhoon wind speed.More importantly,the ETCVT extrema diff ered in response to diff erent typhoon tracks.Three types of typhoon were identifi ed based on their track and impact on ETCVT.Representative typhoon cases were examined to elucidate the specifi cs of each typical response.Based on historical best track data and HYCOM data,it was established that Type I typhoons caused the ETCVT to exhibit a negative extremum followed by a positive extremum.All Type I,II,and III typhoons tended to result in typical ETCVT fl uctuations in the surface mixing layer above the depth of 50-100 m,while Type II typhoons were more likely to induce ETCVT fl uctuations in the subsurface layer.The fi ndings of this study enhance understanding of ETCVT extrema that occur following typhoon passage,which is valuable for short-term physical-biogeochemical studies both in the study region and in areas downstream owing to the large net volume transport changes induced by typhoons.展开更多
The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room...The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room temperature ion conductivity and inferior mechanical strength for linear PEO-based SPEs are still the immense obstacles impeding the further applications of SPEs for large-scale commercialization.Herein,we fabricate a series of semi-interpenetrating-network (semi-IPN) polymer electrolytes based on a novel liquid crystal (C6M LC) and poly(ethylene glycol) diglycidyl ether (PEGDE) via UV-irradiation at the first time.The LCs not only highly improve the mechanical properties of electrolyte membranes via the construction of network structure with PEGDE,but also create stable ion transport channels for ion conduction.As a result,a free-standing flexible SPE shows outstanding ionic conductivity(5.93×10^(-5) S cm^(-1) at 30℃),a very wide electrochemical stability window of 5.5 V,and excellent thermal stability at thermal decomposition temperatures above 360℃ as well as the capacity of suppressing lithium dendrite growth.Moreover,the LiFePO_(4)/Li battery assembled with the semi-IPN electrolyte membranes exhibits good cycle performance and admirable reversible specific capacity.This work highlights the obvious advantages of LCs applied to the electrolyte for the advanced solid lithium battery.展开更多
The transient response of the turbulent enstrophy transport to opposition control in the turbulent channel flow is studied with the aid of direct numerical simulation. It is found that the streamwise enstrophy and the...The transient response of the turbulent enstrophy transport to opposition control in the turbulent channel flow is studied with the aid of direct numerical simulation. It is found that the streamwise enstrophy and the spanwise enstrophy are suppressed by the attenuation of the stretching terms at first, while the vertical enstrophy is reduced by inhibiting the tilt of the mean shear. In the initial period of the control, the streamwise enstrophy evolves much slower than the other two components. The vertical vorticity component exhibits a rapid monotonic decrease and also plays an important role in the attenuation of the other two components.展开更多
Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment...Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment transport trends. Also, the grain size distribution analysis of the bottom sediment sampled in Sep. 2001 is used as the base of the analysis. The result shows that the sediment in Nanxiaohong is from the rive mouth area. The sediment transports upwards with the flood flow which is stronger than the ebb flow, i.e., in the direction of SE-WN. The sediment in main south channel comes from upward. They transport downwards with the ebb flow, which is stronger than the flood flow, i.e., in the direction of WN-SE. The directions, sources and mechanism of sediment transport are identified according to comprehensive analyses of the observed data on hydrodynamics and sediment.展开更多
Most public universities in Latin America and Mexico lack laboratories for measuring sediment transport or to do academic activities. The Research Center of the engineering faculty of Chiapas state university (UNACH b...Most public universities in Latin America and Mexico lack laboratories for measuring sediment transport or to do academic activities. The Research Center of the engineering faculty of Chiapas state university (UNACH by its acronym in Spanish) designed a portable prismatic channel for teaching and researching the sediment transportation in rivers. This paper presents the method to measure river sand transportation in a laboratory channel with a mobile bottom and presents the results of twenty-seven experiments done in the portable channel, using nine different slope inclinations and 27 flow and water speed values. The three main results are the following: 1) The construction of the channel with variable slopes, to experiment and measure sediment transportation. 2) A method developed for measuring the volume of sediment in a laboratory. 3) In a channel with a bottom slope of 0.071, a water flow of 2 l/s and a water speed of 1.77 m/s, the volume of transported sediment was 0.015 m3;in a channel with a bottom slope of 0.44, a water flow of 2 l/s and a water speed of 0.788 m/s, the volume of transported sediment was 0.006 m3;in a channel with the bottom slope of 0.024, a water flow of 2 l/s and a water speed of 0.62 m/s, the transported sediment was 0 m3.展开更多
Potassium(K+)is an essential macronutrient for plants to maintain normal growth and development.Shaker-like K+channels and HAK/KUP/KT transporters are critical components in the K+acquisition and translocation.In this...Potassium(K+)is an essential macronutrient for plants to maintain normal growth and development.Shaker-like K+channels and HAK/KUP/KT transporters are critical components in the K+acquisition and translocation.In this study,we identified 9 Shaker-like K+channel(VvK)and 18 HAK/KUP/KT transporter(VvKUP)genes in grape,which were renamed according to their distributions in the genome and relative linear orders among the distinct chromosomes.Similar structure organizations were found within each group according to the exon/intron structure and protein motif analysis.Chromosomal distribution analysis showed that 9 VvK genes and 18 VvKUP genes were unevenly distributed on 7 or 10 putative grape chromosomes.Three pairs of tandem duplicated genes and one pair of segmental duplicated genes were observed in the expansion of the grape VvKUP genes.Gene expression omnibus(GEO)data analysis showed that VvK and VvKUP genes were expressed differentially in distinct tissues.Various cis-acting regulatory elements pertinent to phytohormone responses and abiotic stresses,including K+deficiency response and drought stress,were detected in the promoter region of VvK and VvKUP genes.This study provides valuable information for further functional studies of VvK and VvKUP genes,and lays a foundation to explore K+uptake and utilization in fruit trees.展开更多
Salinity is a global challenge to agricultural production. Understanding Na^+ sensing and transport in plants under salt stress will be of benefit for breeding robustly salt-tolerant crop species. In this review, firs...Salinity is a global challenge to agricultural production. Understanding Na^+ sensing and transport in plants under salt stress will be of benefit for breeding robustly salt-tolerant crop species. In this review, first, possible salt stress sensor candidates and the root meristem zone as a tissue harboring salt stress-sensing components are proposed. Then,the importance of Na^+ exclusion and vacuolar Na^+ sequestration in plant overall salt tolerance is highlighted. Other Na^+ regulation processes, including xylem Na^+ loading and unloading, phloem Na^+ recirculation, and Na^+ secretion, are discussed and summarized.Along with a summary of Na^+ transporters and channels, the molecular regulation of Na^+ transporters and channels in response to salt stress is discussed. Finally, some largely neglected issues in plant salt stress tolerance, including Na^+ concentration in cytosol and the role of Na^+ as a nutrient, are reviewed and discussed.展开更多
Soils in part of rice production areas have been seriously contaminated by cadmium (Cd). Rice with high Cd content over allowable limit produced in these areas is widely concerned. Low accumulation varieties can rem...Soils in part of rice production areas have been seriously contaminated by cadmium (Cd). Rice with high Cd content over allowable limit produced in these areas is widely concerned. Low accumulation varieties can remarkably decrease the Cd content in rice as well as the risk of food safety. The translocation of Cd either from soil to root system or from roots to aboveground parts is identified by a lot of ion transport proteins. Transport efficiency of Cd in some rice varieties is regulated by special metal ionic transporters. However, most varieties transport Cd by cation transporters or universal ionic transporters. Both the expression levels and time of gens controlling ionic transporters directly influence the Cd transport rates inside rice plant and the accumulation amount in different organs. Screening and utilizing specific Cd transport genes are the genetic basis of breeding low accumulation varieties.展开更多
Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic...Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three- dimensional structure model diagram af the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.展开更多
Secretory pore-forming proteins(PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs(af-PFPs) and...Secretory pore-forming proteins(PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs(af-PFPs) and trefoil factors(TFFs). As a toad af-PFP, Bm ALP1 can be reversibly regulated between active and inactive forms, with its paralog Bm ALP3 acting as a negative regulator. Bm ALP1 interacts with Bm TFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence,we hereby propose a secretory endolysosome channel(SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.展开更多
The Dinh An Estuary is one of the Nine Dragon estuaries of the Mekong River. An international navigation channel was built in the estuary for vessels traveling from the South China Sea to the southwestern area of Viet...The Dinh An Estuary is one of the Nine Dragon estuaries of the Mekong River. An international navigation channel was built in the estuary for vessels traveling from the South China Sea to the southwestern area of Vietnam and then to Phnom Penh, Cambodia. The morphological evolution of the navigation channel is complicated and unstable. The back siltation intensity in the navigation channel has largely increased and been concentrated in the curvature segments of the channel since 1980. In this study, based on simulation results and measured data, five key factors that influence the back siltation in the navigation channel were systematically analyzed. These factors included the increasing elevation gap between the channel and the nearby seabed, the disadvantageous hydrodynamic conditions, sediment transport, mixing of saltwater and freshwater, and wave effects in the navigation channel. It is shown that the back siltation to a large extent results from the low current velocity of the secondary ocean circulation, which often occurs in the curvature segments of the channel. Suspended sediment also settles in the channel due to the decrease of the current velocity and the sediment transport capacity when flow passes through the channel. The changes of hydrodynamic conditions are responsible for the majority of the severe siltation in the curvature segments of the navigation channel.展开更多
TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from...TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology. However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.展开更多
Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, int...Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration.展开更多
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field ad...Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.展开更多
Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,althoug...Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement.展开更多
Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address th...Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs.A model CSE is composed of argyrodite-type Li_6PS_5Cl(LPSCl)and gel polymer electrolyte(GPE,including Li~+-glyme complex as an ion-conducting medium).The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase.Additionally,manipulating the solvation/desolvation behavior of the Li~+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface.The resulting scalable CSE(area=8×6(cm×cm),thickness~40μm)can be assembled with a high-mass-loading LiNi_(0.7)Co_(0.15)Mn_(0.15)O_(2)cathode(areal-mass-loading=39 mg cm~(-2))and a graphite anode(negative(N)/positive(P)capacity ratio=1.1)in order to fabricate an SSB full cell with bi-cell configuration.Under this constrained cell condition,the SSB full cell exhibits high volumetric energy density(480 Wh L_(cell)~(-1))and stable cyclability at 25℃,far exceeding the values reported by previous CSE-based SSBs.展开更多
文摘Turbulent features of streamwise and vertical components of velocity in the negative transport region of asymmetric plane channel flow have been studied experimentally in details. Experiments show that turbulent fluctuations in negative transport region are suppressed, and their probability distributions are far from Gaussian. Besides, the skewness factors attain their negative maxima at the position of the maximum mean velocity, whereas the flatness factors attain their positive maxima at the same position.
基金Supported by the National Natural Science Foundation of China(Nos.41630967,42076002,41776020,41476018)。
文摘Northward infl ow through the East Taiwan Channel is vital in modulation of water exchange processes off northeastern Taiwan,China.In addition to the eff ects of the Kuroshio Current and westward-propagating oceanic mesoscale eddies,the seas off eastern Taiwan,China,are frequently infl uenced by typhoons.Focusing on extrema of East Taiwan Channel volume transport(ETCVT)that appear within days of typhoon infl uence,this study investigated 124 historical cyclones including 91 typhoons that passed over the study sea area off eastern Taiwan,China.Based on 25-year HYbrid Coordinate Ocean Model(HYCOM)data,71%of short-term(within 10 d)ETCVT absolute values with>5 Sv occurred under the infl uence of typhoons crossing the study sea area,and the maximum short-term ETCVT extrema induced by typhoons were 12.5 and-10.9 Sv.The ETCVT extrema induced by typhoons showed reasonable positive correlation with typhoon wind speed.More importantly,the ETCVT extrema diff ered in response to diff erent typhoon tracks.Three types of typhoon were identifi ed based on their track and impact on ETCVT.Representative typhoon cases were examined to elucidate the specifi cs of each typical response.Based on historical best track data and HYCOM data,it was established that Type I typhoons caused the ETCVT to exhibit a negative extremum followed by a positive extremum.All Type I,II,and III typhoons tended to result in typical ETCVT fl uctuations in the surface mixing layer above the depth of 50-100 m,while Type II typhoons were more likely to induce ETCVT fl uctuations in the subsurface layer.The fi ndings of this study enhance understanding of ETCVT extrema that occur following typhoon passage,which is valuable for short-term physical-biogeochemical studies both in the study region and in areas downstream owing to the large net volume transport changes induced by typhoons.
基金supported by the National Natural Science Foundation of China(No.52073285 and No.11975238)。
文摘The development of the solid-state polymer electrolytes (SPEs) for Li-ion batteries (LIBs) can effectively address the hidden safety issues of commercially used liquid electrolytes.Nevertheless,the unsatisfactory room temperature ion conductivity and inferior mechanical strength for linear PEO-based SPEs are still the immense obstacles impeding the further applications of SPEs for large-scale commercialization.Herein,we fabricate a series of semi-interpenetrating-network (semi-IPN) polymer electrolytes based on a novel liquid crystal (C6M LC) and poly(ethylene glycol) diglycidyl ether (PEGDE) via UV-irradiation at the first time.The LCs not only highly improve the mechanical properties of electrolyte membranes via the construction of network structure with PEGDE,but also create stable ion transport channels for ion conduction.As a result,a free-standing flexible SPE shows outstanding ionic conductivity(5.93×10^(-5) S cm^(-1) at 30℃),a very wide electrochemical stability window of 5.5 V,and excellent thermal stability at thermal decomposition temperatures above 360℃ as well as the capacity of suppressing lithium dendrite growth.Moreover,the LiFePO_(4)/Li battery assembled with the semi-IPN electrolyte membranes exhibits good cycle performance and admirable reversible specific capacity.This work highlights the obvious advantages of LCs applied to the electrolyte for the advanced solid lithium battery.
基金supported by the National Natural Science Foundation of China (Nos.10925210,11002081,and 11132005)
文摘The transient response of the turbulent enstrophy transport to opposition control in the turbulent channel flow is studied with the aid of direct numerical simulation. It is found that the streamwise enstrophy and the spanwise enstrophy are suppressed by the attenuation of the stretching terms at first, while the vertical enstrophy is reduced by inhibiting the tilt of the mean shear. In the initial period of the control, the streamwise enstrophy evolves much slower than the other two components. The vertical vorticity component exhibits a rapid monotonic decrease and also plays an important role in the attenuation of the other two components.
文摘Nanxiaohong and Nangang main south channel are chosen as the typical flood and ebb channels. Hydrodynamics analysis based on field hydrological and sediment data is conducted with Gao-Collins model to analyse sediment transport trends. Also, the grain size distribution analysis of the bottom sediment sampled in Sep. 2001 is used as the base of the analysis. The result shows that the sediment in Nanxiaohong is from the rive mouth area. The sediment transports upwards with the flood flow which is stronger than the ebb flow, i.e., in the direction of SE-WN. The sediment in main south channel comes from upward. They transport downwards with the ebb flow, which is stronger than the flood flow, i.e., in the direction of WN-SE. The directions, sources and mechanism of sediment transport are identified according to comprehensive analyses of the observed data on hydrodynamics and sediment.
文摘Most public universities in Latin America and Mexico lack laboratories for measuring sediment transport or to do academic activities. The Research Center of the engineering faculty of Chiapas state university (UNACH by its acronym in Spanish) designed a portable prismatic channel for teaching and researching the sediment transportation in rivers. This paper presents the method to measure river sand transportation in a laboratory channel with a mobile bottom and presents the results of twenty-seven experiments done in the portable channel, using nine different slope inclinations and 27 flow and water speed values. The three main results are the following: 1) The construction of the channel with variable slopes, to experiment and measure sediment transportation. 2) A method developed for measuring the volume of sediment in a laboratory. 3) In a channel with a bottom slope of 0.071, a water flow of 2 l/s and a water speed of 1.77 m/s, the volume of transported sediment was 0.015 m3;in a channel with a bottom slope of 0.44, a water flow of 2 l/s and a water speed of 0.788 m/s, the volume of transported sediment was 0.006 m3;in a channel with the bottom slope of 0.024, a water flow of 2 l/s and a water speed of 0.62 m/s, the transported sediment was 0 m3.
基金supported from grants of the Shandong Provincial Natural Science Foundation Project(Grant No.ZR2021MC086)and National Science Foundation of China(31601819 and 3151743).
文摘Potassium(K+)is an essential macronutrient for plants to maintain normal growth and development.Shaker-like K+channels and HAK/KUP/KT transporters are critical components in the K+acquisition and translocation.In this study,we identified 9 Shaker-like K+channel(VvK)and 18 HAK/KUP/KT transporter(VvKUP)genes in grape,which were renamed according to their distributions in the genome and relative linear orders among the distinct chromosomes.Similar structure organizations were found within each group according to the exon/intron structure and protein motif analysis.Chromosomal distribution analysis showed that 9 VvK genes and 18 VvKUP genes were unevenly distributed on 7 or 10 putative grape chromosomes.Three pairs of tandem duplicated genes and one pair of segmental duplicated genes were observed in the expansion of the grape VvKUP genes.Gene expression omnibus(GEO)data analysis showed that VvK and VvKUP genes were expressed differentially in distinct tissues.Various cis-acting regulatory elements pertinent to phytohormone responses and abiotic stresses,including K+deficiency response and drought stress,were detected in the promoter region of VvK and VvKUP genes.This study provides valuable information for further functional studies of VvK and VvKUP genes,and lays a foundation to explore K+uptake and utilization in fruit trees.
基金supported by a Ph.D. scholarship provided by University of Tasmania (185466S9A),Australiathe Open Fund of State Key Laboratory of Tea Plant Biology Utilization at Anhui Agricultural University (SKLTOF20170112)
文摘Salinity is a global challenge to agricultural production. Understanding Na^+ sensing and transport in plants under salt stress will be of benefit for breeding robustly salt-tolerant crop species. In this review, first, possible salt stress sensor candidates and the root meristem zone as a tissue harboring salt stress-sensing components are proposed. Then,the importance of Na^+ exclusion and vacuolar Na^+ sequestration in plant overall salt tolerance is highlighted. Other Na^+ regulation processes, including xylem Na^+ loading and unloading, phloem Na^+ recirculation, and Na^+ secretion, are discussed and summarized.Along with a summary of Na^+ transporters and channels, the molecular regulation of Na^+ transporters and channels in response to salt stress is discussed. Finally, some largely neglected issues in plant salt stress tolerance, including Na^+ concentration in cytosol and the role of Na^+ as a nutrient, are reviewed and discussed.
基金Supported by the Fundamental Research Funds of Central Welfare Scientific Research Institutes(2013-szjj-lzq-04)the Agroecological Environment Protection Program(2013-072)
文摘Soils in part of rice production areas have been seriously contaminated by cadmium (Cd). Rice with high Cd content over allowable limit produced in these areas is widely concerned. Low accumulation varieties can remarkably decrease the Cd content in rice as well as the risk of food safety. The translocation of Cd either from soil to root system or from roots to aboveground parts is identified by a lot of ion transport proteins. Transport efficiency of Cd in some rice varieties is regulated by special metal ionic transporters. However, most varieties transport Cd by cation transporters or universal ionic transporters. Both the expression levels and time of gens controlling ionic transporters directly influence the Cd transport rates inside rice plant and the accumulation amount in different organs. Screening and utilizing specific Cd transport genes are the genetic basis of breeding low accumulation varieties.
基金The National Natural Science Foundation of China under contract Nos 41306057 and 40906028the Open Fund of the Key Laboratory of Submarine Geosciences,State Oceanic Administration under contract No.KLSG1406
文摘Triple mass-transport deposits (MTDs) with areas of 625, 494 and 902 km^2, respectively, have been identified on the north slope of the Xisha Trough, northern South China Sea margin. Based on high-resolution seismic reflection data and multi-beam bathymetric data, the Quaternary MTDs are characterized by typical geometric shapes and internal structures. Results of slope analysis showed that they are developed in a steep slope ranging from 5° to 35°. The head wall scarps of the MTDs arrived to 50 km in length (from headwall to termination). Their inner structures include well developed basal shear surface, growth faults, stepping lateral scarps, erosion grooves, and frontal thrust deformation. From seismic images, the central deepwater channel system of the Xisha Trough has been filled by interbedded channel-levee deposits and thick MTDs. Therefore, we inferred that the MTDs in the deepwater channel system could be dominated by far-travelled slope failure deposits even though there are local collapses of the trough walls. And then, we drew the two-dimensional process model and three- dimensional structure model diagram af the MTDs. Combined with the regional geological setting and previous studies, we discussed the trigger mechanisms of the triple MTDs.
基金supported by the National Natural Science Foundation of China (31572268, U1602225, 31872226)Yunling Scholar Program to Y.Z。
文摘Secretory pore-forming proteins(PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs(af-PFPs) and trefoil factors(TFFs). As a toad af-PFP, Bm ALP1 can be reversibly regulated between active and inactive forms, with its paralog Bm ALP3 acting as a negative regulator. Bm ALP1 interacts with Bm TFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence,we hereby propose a secretory endolysosome channel(SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
基金supported by the 322 Project of Vietnam International Education Development, Ministry of Education and Training, Vietnam (Grant No. 322)the Qing Lan Project, the 333 Project of Jiangsu Province (Grant No. BRA2012130)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.2012B06514)the 111 Project (Grant No. B12032)
文摘The Dinh An Estuary is one of the Nine Dragon estuaries of the Mekong River. An international navigation channel was built in the estuary for vessels traveling from the South China Sea to the southwestern area of Vietnam and then to Phnom Penh, Cambodia. The morphological evolution of the navigation channel is complicated and unstable. The back siltation intensity in the navigation channel has largely increased and been concentrated in the curvature segments of the channel since 1980. In this study, based on simulation results and measured data, five key factors that influence the back siltation in the navigation channel were systematically analyzed. These factors included the increasing elevation gap between the channel and the nearby seabed, the disadvantageous hydrodynamic conditions, sediment transport, mixing of saltwater and freshwater, and wave effects in the navigation channel. It is shown that the back siltation to a large extent results from the low current velocity of the secondary ocean circulation, which often occurs in the curvature segments of the channel. Suspended sediment also settles in the channel due to the decrease of the current velocity and the sediment transport capacity when flow passes through the channel. The changes of hydrodynamic conditions are responsible for the majority of the severe siltation in the curvature segments of the navigation channel.
文摘TO THE EDITOR Sir, I read with great interest the recently published article in the World Journal of Gastroenterology by Jin and co-workers on the cloning and characterization of porcine aquaporin 1 water channel from the pig liver and studies on its expression in the porcine gastrointestinal system. The authors should be congratulated for making this important and valuable contribution to the field of aquaporin biology and porcine gastrointestinal physiology. However, there are a number of unresolved issues and controversies concerning the expression of aquaporins (especially aquaporin 1) in the gastrointestinal system that are worthy of additional comment and discussion by Jin and co-workers.
文摘Malignant melanoma, characterized by invasive local growth and early formation of metastases, is the most aggressive type of skin cancer. Melanoma inhibitory activity (MIA), secreted by malignant melanoma cells, interacts with the cell adhesion receptors, integrins a4131 and 05131, facilitating cell detachment and promoting formation of me- tastases. In the present study, we demonstrate that MIA secretion is confined to the rear end of migrating cells, while in non-migrating cells MIA accumulates in the actin cortex. MIA protein takes a conventional secretory pathway including coat protein complex I (COPI)- and coat protein complex II (COPII)-dependent protein transport to the cell periphery, where its final release depends on intracellular Ca2+ ions. Interestingly, the Ca2+-activated K+-channel, subfamily N, member 4 (KCa3.1), known to be active at the rear end of migrating cells, was found to support MIA secretion. Secretion was diminished by the specific KCa3.1 channel inhibitor TRAM-34 and by expression of dominant- negative mutants of the channel. In summary, we have elucidated the migration-associated transport of MIA protein to the cell rear and also disclosed a new mechanism by which KCa3.1 potassium channels promote cell migration.
基金The project supported by the Key Projects of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grants Nos. 70371068 and 10247005
文摘Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neural network with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
基金supported by the National Key Research and Development Program of China (2021YFF1000500)National Natural Science Foundation of China (32025004, 32161133014, and31921001)Beijing Outstanding University Discipline Program。
文摘Potassium(K) is an essential macronutrient for plant growth and development and influences yield and quality of agricultural crops.Maize(Zea mays) is one of the most widely distributed crops worldwide.In China,although maize consumes a large amount of K fertilizer,the K uptake/utilization efficiency(KUE)of maize cultivars is relatively low.Elucidation of KUE mechanisms and development of maize cultivars with higher KUE are needed.Maize KUE is determined by K+uptake,transport,and remobilization,which depend on a variety of K+channels and transporters.We review basic information about K+channels and transporters in maize,their functions and regulation,and the roles of K+in nitrogen transport,sugar transport,and salt tolerance.We discuss challenges and prospects for maize KUE improvement.
基金the Basic Science Research Program(2018M3D1A1058744,2021R1A5A6002853,2021R1A2B5B03001615,and 2022M3J1A1085397)through the National Research Foundation of Korea(NRF)grant by the Korean Government(MSIT)provided by KISTI(KSC-2020-CRE-0301)supported by the Hyundai NGV program。
文摘Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs.A model CSE is composed of argyrodite-type Li_6PS_5Cl(LPSCl)and gel polymer electrolyte(GPE,including Li~+-glyme complex as an ion-conducting medium).The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase.Additionally,manipulating the solvation/desolvation behavior of the Li~+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface.The resulting scalable CSE(area=8×6(cm×cm),thickness~40μm)can be assembled with a high-mass-loading LiNi_(0.7)Co_(0.15)Mn_(0.15)O_(2)cathode(areal-mass-loading=39 mg cm~(-2))and a graphite anode(negative(N)/positive(P)capacity ratio=1.1)in order to fabricate an SSB full cell with bi-cell configuration.Under this constrained cell condition,the SSB full cell exhibits high volumetric energy density(480 Wh L_(cell)~(-1))and stable cyclability at 25℃,far exceeding the values reported by previous CSE-based SSBs.